These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
268 related items for PubMed ID: 688017
21. Optic synapse number but not density is constrained during regeneration onto surgically halved tectum in goldfish: HRP-EM evidence that optic fibers compete for fixed numbers of postsynaptic sites on the tectum. Hayes WP, Meyer RL. J Comp Neurol; 1988 Aug 22; 274(4):539-59. PubMed ID: 2464623 [Abstract] [Full Text] [Related]
22. Mapping retinal projections from double nasal and double temporal compound eyes to dually innervated tectum in Xenopus. Straznicky C. Brain Res; 1981 Apr 22; 227(2):139-52. PubMed ID: 7225884 [Abstract] [Full Text] [Related]
23. Mapping the normal and regenerating retinotectal projection of goldfish with autoradiographic methods. Meyer RL. J Comp Neurol; 1980 Jan 15; 189(2):273-89. PubMed ID: 7364965 [Abstract] [Full Text] [Related]
24. Progress of topographic regulation of the visual projection in the halved optic tectum of adult goldfish. Yoon MG. J Physiol; 1976 Jun 15; 257(3):621-43. PubMed ID: 950607 [Abstract] [Full Text] [Related]
25. Normal and regenerating optic fibers in goldfish tectum: HRP-EM evidence for rapid synaptogenesis and optic fiber-fiber affinity. Hayes WP, Meyer RL. J Comp Neurol; 1988 Aug 22; 274(4):516-38. PubMed ID: 2464622 [Abstract] [Full Text] [Related]
29. Regeneration of optic nerve fibres from a compound eye to both tecta in Xenopus: evidence relating to the state of specification of the eye and the tectum. Gaze RM, Straznicky C. J Embryol Exp Morphol; 1980 Dec 22; 60():125-40. PubMed ID: 7310265 [Abstract] [Full Text] [Related]
31. Evidence of collateral sprouting in the frog visual system. Stelzner DJ. Brain Res; 1979 May 25; 168(2):382-7. PubMed ID: 312679 [No Abstract] [Full Text] [Related]
32. Retinotopically inappropriate synapses of subnormal density formed by surgically misdirected optic fibers in goldfish tectum. Hayes WP, Meyer RL. Brain Res; 1988 Feb 01; 466(2):304-12. PubMed ID: 3359320 [Abstract] [Full Text] [Related]
34. Organization of extrinsic tectal connections in Goldfish (Caraccius auratus). Grover BG, Sharma SC. J Comp Neurol; 1981 Mar 01; 196(3):471-88. PubMed ID: 7217368 [Abstract] [Full Text] [Related]
35. Interactions between optic fibres controlling the locations of their terminals in the goldfish optic tectum. Cook JE. J Embryol Exp Morphol; 1979 Aug 01; 52():89-103. PubMed ID: 521756 [Abstract] [Full Text] [Related]
36. Changes in retinal projections and ganglion cell morphology after unilateral enucleation in the common carp. Ito H, Yoshimoto M, Uchiyama H, Somiya H, Negishi K. Brain Behav Evol; 1992 Aug 01; 40(4):197-208. PubMed ID: 1450895 [Abstract] [Full Text] [Related]
37. Discontinuous mapping of retina onto tectum innervated by both eyes. Levine RL, Jacobson M. Brain Res; 1975 Nov 07; 98(1):172-6. PubMed ID: 1175056 [No Abstract] [Full Text] [Related]
39. Topography of regenerating optic fibers in goldfish traced with local wheat germ injections into retina: evidence for discontinuous microtopography in the retinotectal projection. Meyer RL, Sakurai K, Schauwecker E. J Comp Neurol; 1985 Sep 01; 239(1):27-43. PubMed ID: 4044930 [Abstract] [Full Text] [Related]