These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
153 related items for PubMed ID: 689250
1. Penetration and entrapment of large particles in erythrocytes by electrical breakdown techniques. Vienken J, Jeltsch E, Zimmermann U. Cytobiologie; 1978 Jun; 17(1):182-96. PubMed ID: 689250 [Abstract] [Full Text] [Related]
2. Stomatocytosis of latex particles (0.26 micron) by rat erythrocytes by the electrical breakdown technique. Schüssler W, Ruhenstroth-Bauer G. Blut; 1984 Sep; 49(3):213-7. PubMed ID: 6478060 [Abstract] [Full Text] [Related]
3. Deformability and stability of erythrocytes in high-frequency electric fields down to subzero temperatures. Krueger M, Thom F. Biophys J; 1997 Nov; 73(5):2653-66. PubMed ID: 9370459 [Abstract] [Full Text] [Related]
4. Effect of lysophosphatidylcholine on salt permeability through the erythrocyte membrane under haemolytic conditions. Eskelinen S. Gen Physiol Biophys; 1986 Dec; 5(6):637-47. PubMed ID: 3557104 [Abstract] [Full Text] [Related]
5. Electrical hemolysis of human and bovine red blood cells. Zimmermann U, Pilwat G, Holzapfel C, Rosenheck K. J Membr Biol; 1976 Dec 28; 30(2):135-52. PubMed ID: 13222 [Abstract] [Full Text] [Related]
6. "Ultramicroinjection" of macromolecules or small particles into animal cells. A new technique based on virus-induced cell fusion. Loyter A, Zakai N, Kulka RG. J Cell Biol; 1975 Aug 28; 66(2):292-304. PubMed ID: 167032 [Abstract] [Full Text] [Related]
7. [Effect of cholesterol on the stability of human erythrocyte membranes to electric breakdown]. Goncharenko MS, Katkov II. Biofizika; 1985 Aug 28; 30(3):441-5. PubMed ID: 4027273 [Abstract] [Full Text] [Related]
8. The effect of an osmotic pressure gradient and lysophosphatidylcholine on the transient and constant potassium permeability properties of the erythrocyte membrane. Eskelinen S, Bernhardt I. Biomed Biochim Acta; 1984 Aug 28; 43(7):947-53. PubMed ID: 6517890 [Abstract] [Full Text] [Related]
9. Electrical sizing of particles in suspensions. V. High electric fields. Grover NB, Ben-Sasson SA, Naaman J. Anal Quant Cytol; 1982 Dec 28; 4(4):302-8. PubMed ID: 6299149 [No Abstract] [Full Text] [Related]
10. [Structure and physiological functions of erythrocytes--hemolysis and membrane permeability]. Uyesaka N, Shinagawa Y. Nihon Rinsho; 1979 Dec 28; 37(12):3845-52. PubMed ID: 537174 [No Abstract] [Full Text] [Related]
13. The physico-mathematical theory of human erythrocyte hypotonic hemolysis phenomenon. Gordienko EA, Gordienko YE, Gordienko OI. Cryo Letters; 2003 Dec 28; 24(4):229-44. PubMed ID: 12955170 [Abstract] [Full Text] [Related]
15. Amino, chloromethyl and acetal-functionalized latex particles for immunoassays: a comparative study. Izquierdo MP, Martín-Molina A, Ramos J, Rus A, Borque L, Forcada J, Galisteo-González F. J Immunol Methods; 2004 Apr 28; 287(1-2):159-67. PubMed ID: 15099764 [Abstract] [Full Text] [Related]
16. [Electrical breakdown of erythrocyte membranes attributed to the diffusion potential difference]. Putvinskiĭ AV, Popov SA, Puchkova TV, Danilov IuA, Vladimirov IuA. Biofizika; 1983 Apr 28; 28(3):505-6. PubMed ID: 6871275 [Abstract] [Full Text] [Related]
17. Electron microscopic demonstration of negative charges on cell surfaces by means of protamine-ferritin conjugates. Bergmann P, Pfüller U, Franz H. Acta Histochem Suppl; 1980 Apr 28; 22():385-7. PubMed ID: 6789394 [No Abstract] [Full Text] [Related]
18. Preparation of uniform haemoglobin free human erythrocyte ghosts in isotonic solution. Schneeweiss F, Zimmermann U, Saleemuddin M. Biochim Biophys Acta; 1977 Apr 18; 466(2):373-8. PubMed ID: 870045 [Abstract] [Full Text] [Related]
19. Voltage-induced pore formation and hemolysis of human erythrocytes. Kinosita K, Tsong TY. Biochim Biophys Acta; 1977 Dec 01; 471(2):227-42. PubMed ID: 921980 [Abstract] [Full Text] [Related]