These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


117 related items for PubMed ID: 6893279

  • 1. Interaction of lysophosphatidylcholine with phosphatidylcholine bilayers. A photo-physical and NMR study.
    Morris DA, McNeil R, Castellino FJ, Thomas JK.
    Biochim Biophys Acta; 1980 Jul; 599(2):380-90. PubMed ID: 6893279
    [Abstract] [Full Text] [Related]

  • 2. Effects of lysophosphatidylcholines on phosphatidylcholine and phosphatidylcholine/cholesterol liposome systems as revealed by 31P-NMR, electron microscopy and permeability studies.
    Van Echteld CJ, De Kruijff B, Mandersloot JG, De Gier J.
    Biochim Biophys Acta; 1981 Dec 07; 649(2):211-20. PubMed ID: 7317392
    [Abstract] [Full Text] [Related]

  • 3. Organization and dynamics of pyrene and pyrene lipids in intact lipid bilayers. Photo-induced charge transfer processes.
    Barenholz Y, Cohen T, Korenstein R, Ottolenghi M.
    Biophys J; 1991 Jul 07; 60(1):110-24. PubMed ID: 1883931
    [Abstract] [Full Text] [Related]

  • 4. Differential miscibility properties of various phosphatidylcholine/lysophosphatidylcholine mixtures.
    Van Echteld CJ, de Kruijff B, de Gier J.
    Biochim Biophys Acta; 1980 Jul 07; 595(1):71-81. PubMed ID: 7349884
    [Abstract] [Full Text] [Related]

  • 5. Effects of platelet-activating factor (PAF), lyso-PAF and lysophosphatidylcholine on phosphatidylcholine bilayers, an ESR, 31P-NMR and X-ray diffraction study.
    Olivier JL, Chachaty C, Quinn PJ, Wolf C.
    J Lipid Mediat; 1991 Jul 07; 3(3):311-32. PubMed ID: 1663404
    [Abstract] [Full Text] [Related]

  • 6. Spontaneous vesiculation of uncharged phospholipid dispersions consisting of lecithin and lysolecithin.
    Hauser H.
    Chem Phys Lipids; 1987 May 07; 43(4):283-99. PubMed ID: 3607970
    [Abstract] [Full Text] [Related]

  • 7. Oxygen quenching of pyrene-lipid fluorescence in phosphatidylcholine vesicles. A probe for membrane organization.
    Chong PL, Thompson TE.
    Biophys J; 1985 May 07; 47(5):613-21. PubMed ID: 4016182
    [Abstract] [Full Text] [Related]

  • 8. Outside-inside distribution and translocation of lysophosphatidylcholine in phosphatidylcholine vesicles as determinied by 13C-NMR using (N-13CH3)-enriched lipids.
    de Kruyff B, van den Besselaar AM, van Deenen LL.
    Biochim Biophys Acta; 1977 Mar 17; 465(3):443-53. PubMed ID: 836836
    [Abstract] [Full Text] [Related]

  • 9. Monitoring the location profile of fluorophores in phosphatidylcholine bilayers by the use or paramagnetic quenching.
    Luisetti J, Möhwald H, Galla HJ.
    Biochim Biophys Acta; 1979 Apr 19; 552(3):519-30. PubMed ID: 221020
    [Abstract] [Full Text] [Related]

  • 10. Protein-mediated transbilayer movement of lysophosphatidylcholine in glycophorin-containing vesicles.
    van Zoelen EJ, de Kruijff B, van Deenen LL.
    Biochim Biophys Acta; 1978 Mar 21; 508(1):97-108. PubMed ID: 629969
    [Abstract] [Full Text] [Related]

  • 11. Micropolarities of lipid bilayers and micelles. 5. Localization of pyrene in small unilamellar phosphatidylcholine vesicles.
    L'Heureux GP, Fragata M.
    Biophys Chem; 1988 Jul 15; 30(3):293-301. PubMed ID: 3207848
    [Abstract] [Full Text] [Related]

  • 12. Buffer-induced swelling and vesicle budding in binary lipid mixtures of dioleoylphosphatidylcholine:dioleoylphosphatidylethanolamine and dioleoylphosphatidylcholine:lysophosphatidylcholine using small-angle X-ray scattering and ³¹P static NMR.
    Barriga HM, Bazin R, Templer RH, Law RV, Ces O.
    Langmuir; 2015 Mar 17; 31(10):2979-87. PubMed ID: 25738977
    [Abstract] [Full Text] [Related]

  • 13. Evidence that pyrene excimer formation in membranes is not diffusion-controlled.
    Blackwell MF, Gounaris K, Barber J.
    Biochim Biophys Acta; 1986 Jun 26; 858(2):221-34. PubMed ID: 3718977
    [Abstract] [Full Text] [Related]

  • 14. Lysophosphatidylcholine stabilizes small unilamellar phosphatidylcholine vesicles. Phosphorus-31 NMR evidence for the "wedge" effect.
    Kumar VV, Malewicz B, Baumann WJ.
    Biophys J; 1989 Apr 26; 55(4):789-92. PubMed ID: 2720071
    [Abstract] [Full Text] [Related]

  • 15. Lysophosphatidylcholine-cholesterol complex.
    Ramsammy LS, Brockerhoff H.
    J Biol Chem; 1982 Apr 10; 257(7):3570-4. PubMed ID: 7061497
    [Abstract] [Full Text] [Related]

  • 16. Comparative differential scanning calorimetric and FTIR and 31P-NMR spectroscopic studies of the effects of cholesterol and androstenol on the thermotropic phase behavior and organization of phosphatidylcholine bilayers.
    McMullen TP, Lewis RN, McElhaney RN.
    Biophys J; 1994 Mar 10; 66(3 Pt 1):741-52. PubMed ID: 8011906
    [Abstract] [Full Text] [Related]

  • 17. Ca2+-induced isotropic motion and phosphatidylcholine flip-flop in phosphatidylcholine-cardiolipin bilayers.
    Gerritsen WJ, de Kruijff B, Verkleij AJ, de Gier J, van Deenen LL.
    Biochim Biophys Acta; 1980 Jun 06; 598(3):554-60. PubMed ID: 7388023
    [Abstract] [Full Text] [Related]

  • 18. Influence of cholesterol on bilayers of ester- and ether-linked phospholipids. Permeability and 13C-nuclear magnetic resonance measurements.
    Bittman R, Clejan S, Lund-Katz S, Phillips MC.
    Biochim Biophys Acta; 1984 May 16; 772(2):117-26. PubMed ID: 6722139
    [Abstract] [Full Text] [Related]

  • 19. Influence of dicarboxylic phosphatidylcholines on the stability and phase transition of phosphatidylcholine liposomes.
    Dousset N, Dousset JC, Douste-Blazy L.
    Biochim Biophys Acta; 1981 Feb 20; 641(1):1-10. PubMed ID: 6894247
    [Abstract] [Full Text] [Related]

  • 20. Lateral organization of pyrene-labeled lipids in bilayers as determined from the deviation from equilibrium between pyrene monomers and excimers.
    Barenholz Y, Cohen T, Haas E, Ottolenghi M.
    J Biol Chem; 1996 Feb 09; 271(6):3085-90. PubMed ID: 8621705
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.