These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
123 related items for PubMed ID: 6937729
1. Comparative flavoprotein catalysis of anthracycline antibiotic. Reductive cleavage and oxygen consumption. Pan SS, Pedersen L, Bachur NR. Mol Pharmacol; 1981 Jan; 19(1):184-6. PubMed ID: 6937729 [No Abstract] [Full Text] [Related]
2. Loss of fluorescence by anthracycline antibiotics: effects of xanthine oxidase and identification of the nonfluorescent metabolites. Dodion P, Bernstein AL, Fox BM, Bachur NR. Cancer Res; 1987 Feb 15; 47(4):1036-9. PubMed ID: 3467841 [Abstract] [Full Text] [Related]
3. Xanthine oxidase catalyzed reductive cleavage of anthracycline antibiotics and free radical formation. Pan SS, Bachur NR. Mol Pharmacol; 1980 Jan 15; 17(1):95-9. PubMed ID: 6892948 [No Abstract] [Full Text] [Related]
4. Interaction of aclarubicin with DNA as compared with daunorubicin and doxorubicin. Ando S, Sasada M, Uchino H, Kagawa D, Ueda T, Nakamura T. Nihon Gan Chiryo Gakkai Shi; 1986 Dec 20; 21(10):2343-55. PubMed ID: 3471823 [No Abstract] [Full Text] [Related]
5. Anthracycline antibiotic pharmacology and metabolism. Bachur NR. Cancer Treat Rep; 1979 May 20; 63(5):817-20. PubMed ID: 455323 [Abstract] [Full Text] [Related]
6. Reductive activation of doxorubicin by xanthine dehydrogenase from EMT6 mouse mammary carcinoma tumors. Yee SB, Pritsos CA. Chem Biol Interact; 1997 May 02; 104(2-3):87-101. PubMed ID: 9212777 [Abstract] [Full Text] [Related]
12. Direct enzyme-catalyzed reduction of anthracyclines by reduced nicotinamide adenine dinucleotide. Fisher J, Ramakrishnan K, Becvar JE. Biochemistry; 1983 Mar 15; 22(6):1347-55. PubMed ID: 6573203 [No Abstract] [Full Text] [Related]
13. Production of hydroxyl radical by iron(III)-anthraquinone complexes through self-reduction and through reductive activation by the xanthine oxidase/hypoxanthine system. Malisza KL, Hasinoff BB. Arch Biochem Biophys; 1995 Aug 01; 321(1):51-60. PubMed ID: 7639535 [Abstract] [Full Text] [Related]
14. The structural basis for anthracycline antibiotic stimulation of oxygen consumption by HL-60 cells and mitochondria. Burke TG, Pritsos CA, Sartorelli AC, Tritton TR. Cancer Biochem Biophys; 1987 Sep 01; 9(3):245-55. PubMed ID: 3124953 [Abstract] [Full Text] [Related]
15. Redox pathway leading to the alkylation of DNA by the anthracycline, antitumor drugs adriamycin and daunomycin. Taatjes DJ, Gaudiano G, Resing K, Koch TH. J Med Chem; 1997 Apr 11; 40(8):1276-86. PubMed ID: 9111302 [Abstract] [Full Text] [Related]
16. Future clinical investigations with anthracycline antibiotics in relation to daunorubicin. Muggia FM, Blum RH, Wernz JC. Cancer Treat Rep; 1981 Apr 11; 65 Suppl 4():35-7. PubMed ID: 6955012 [Abstract] [Full Text] [Related]
17. Cellular pharmacology of amino acid derivatives of daunorubicin and doxorubicin in suspension of renal proximal tubules. Hjelle JT, Baurain R, Masquelier M, Trouet A. J Pharmacol Exp Ther; 1984 May 11; 229(2):372-80. PubMed ID: 6585548 [Abstract] [Full Text] [Related]
18. DNA-binding characteristics of aclarubicin as compared with daunorubicin and doxorubicin. Ando S, Kamiya K, Yoshimura T, Tsutani H, Ueda T, Uchida M, Nakamura T, Uchino H. Anticancer Res; 1988 May 11; 8(3):409-15. PubMed ID: 3164610 [Abstract] [Full Text] [Related]