These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
166 related items for PubMed ID: 6940948
1. Formation of urso- and ursodeoxy-cholic acids from primary bile acids by Clostridium absonum. Macdonald IA, Hutchison DM, Forrest TP. J Lipid Res; 1981 Mar; 22(3):458-66. PubMed ID: 6940948 [Abstract] [Full Text] [Related]
2. Formation of urso- and ursodeoxy-cholic acids from primary bile acids by a Clostridium limosum soil isolate. Sutherland JD, Holdeman LV, Williams CN, Macdonald IA. J Lipid Res; 1984 Oct; 25(10):1084-9. PubMed ID: 6512414 [Abstract] [Full Text] [Related]
3. The enzymic and chemical synthesis of ursodeoxycholic and chenodeoxycholic acid from cholic acid. Sutherland JD, Macdonald IA, Forrest TP. Prep Biochem; 1982 Oct; 12(4):307-21. PubMed ID: 6961394 [Abstract] [Full Text] [Related]
4. The metabolism of primary, 7-oxo, and 7 beta-hydroxy bile acids by Clostridium absonum. Sutherland JD, Macdonald IA. J Lipid Res; 1982 Jul; 23(5):726-32. PubMed ID: 7119570 [Abstract] [Full Text] [Related]
7. Oxidation of primary bile acids by a 7 alpha-hydroxysteroid dehydrogenase elaborating Clostridium bifermentans soil isolate. Sutherland JD, Williams CN, Hutchison DM, Holdeman LV. Can J Microbiol; 1987 Aug; 33(8):663-9. PubMed ID: 3480039 [Abstract] [Full Text] [Related]
8. Estimation of ursodeoxycholic acid in human and bear biles using Clostridium absonum 7 beta-hydroxysteroid dehydrogenase. MacDonald IA, Williams CN, Sutherland JD, MacDonald AC. Anal Biochem; 1983 Dec; 135(2):349-54. PubMed ID: 6581749 [Abstract] [Full Text] [Related]
9. Formation of ursodeoxycholic acid from chenodeoxycholic acid by a 7 beta-hydroxysteroid dehydrogenase-elaborating Eubacterium aerofaciens strain cocultured with 7 alpha-hydroxysteroid dehydrogenase-elaborating organisms. MacDonald IA, Rochon YP, Hutchison DM, Holdeman LV. Appl Environ Microbiol; 1982 Nov; 44(5):1187-95. PubMed ID: 6758698 [Abstract] [Full Text] [Related]
10. Feeding diets containing 2% cheno- or urso-deoxycholic acid or cholestyramine to rats for two weeks alters intestinal morphology and bile acid absorption. Keelan M, Thomson AB. Can J Physiol Pharmacol; 1991 May; 69(5):592-8. PubMed ID: 1863909 [Abstract] [Full Text] [Related]
12. Modulation of low density lipoprotein receptor activity by bile acids: differential effects of chenodeoxycholic and ursodeoxycholic acids in the hamster. Malavolti M, Fromm H, Ceryak S, Roberts IM. J Lipid Res; 1987 Nov; 28(11):1281-95. PubMed ID: 2828498 [Abstract] [Full Text] [Related]
13. Feeding rats diets containing cheno- or ursodeoxycholic acid or cholestyramine modifies intestinal uptake of glucose and lipids. Thomson AB, Keelan M. Digestion; 1987 Nov; 38(3):160-70. PubMed ID: 3443226 [Abstract] [Full Text] [Related]
14. Thermodynamic and molecular basis for dissimilar cholesterol-solubilizing capacities by micellar solutions of bile salts: cases of sodium chenodeoxycholate and sodium ursodeoxycholate and their glycine and taurine conjugates. Carey MC, Montet JC, Phillips MC, Armstrong MJ, Mazer NA. Biochemistry; 1981 Jun 09; 20(12):3637-48. PubMed ID: 7260061 [Abstract] [Full Text] [Related]
15. Isolation of six novel 7-oxo- or urso-type secondary bile acid-producing bacteria from rat cecal contents. Tawthep S, Fukiya S, Lee JY, Hagio M, Ogura Y, Hayashi T, Yokota A. J Biosci Bioeng; 2017 Nov 09; 124(5):514-522. PubMed ID: 28751127 [Abstract] [Full Text] [Related]
16. Determination of ursodeoxycholic acid in serum by a new fluorometric enzymatic method using 7 beta-hydroxysteroid dehydrogenase from Clostridium absonum. Lianidou ES, Papastathopoulos DS, Siskos PA. Anal Biochem; 1989 Jun 09; 179(2):341-6. PubMed ID: 2672876 [Abstract] [Full Text] [Related]
17. The effects of intraduodenal bile acid administration on biliary secretion of ionized calcium and carbonate in man. Knyrim K, Vakil N, Pfab R, Classen M. Hepatology; 1989 Aug 09; 10(2):134-42. PubMed ID: 2744727 [Abstract] [Full Text] [Related]
18. [The significance of the bacterial steroid degradation for the etiology of large bowel cancer. VIII. Transformation of cholic-, chenodeoxycholic-, and deoxycholic acid by lecithinase-lipase-negative clostridia]. Edenharder R, Deser HJ. Zentralbl Bakteriol Mikrobiol Hyg B; 1981 Aug 09; 174(1-2):91-104. PubMed ID: 7324622 [Abstract] [Full Text] [Related]
19. NADP-dependent 3 beta-, 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activities from a lecithinase-lipase-negative Clostridium species 25.11.c. Edenharder R, Pfützner M, Hammann R. Biochim Biophys Acta; 1989 Mar 14; 1002(1):37-44. PubMed ID: 2923864 [Abstract] [Full Text] [Related]
20. In search of sustainable chemical processes: cloning, recombinant expression, and functional characterization of the 7α- and 7β-hydroxysteroid dehydrogenases from Clostridium absonum. Ferrandi EE, Bertolesi GM, Polentini F, Negri A, Riva S, Monti D. Appl Microbiol Biotechnol; 2012 Sep 14; 95(5):1221-33. PubMed ID: 22198717 [Abstract] [Full Text] [Related] Page: [Next] [New Search]