These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


147 related items for PubMed ID: 6948400

  • 1. Biophysical approach. Theoretical models of deformability in blood flow.
    Skalak R.
    Scand J Clin Lab Invest Suppl; 1981; 156():55-8. PubMed ID: 6948400
    [Abstract] [Full Text] [Related]

  • 2. Deformation and orientation of red blood cells in a simple shear flow. Theoretical study and approach at small angle light scattering.
    Stoltz JF, Ravey JC, Larcan A, Mazeron P, Lucius M, Guillot M.
    Scand J Clin Lab Invest Suppl; 1981; 156():67-75. PubMed ID: 6798684
    [Abstract] [Full Text] [Related]

  • 3. What is red cell deformability?
    Schmid-Schönbein H, Gaehtgens P.
    Scand J Clin Lab Invest Suppl; 1981; 156():13-26. PubMed ID: 6948373
    [Abstract] [Full Text] [Related]

  • 4. Filterability and other methods of approaching red cell deformability. Determinants of blood viscosity and red cell deformability.
    Chien S.
    Scand J Clin Lab Invest Suppl; 1981; 156():7-12. PubMed ID: 6948403
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Deformability and viscoelasticity of human erythrocyte membrane.
    Hochmuth RM.
    Scand J Clin Lab Invest Suppl; 1981; 156():63-6. PubMed ID: 6948402
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Thermal transitions of red blood cell deformability. Correlation with membrane rheological properties.
    Hanss M, Koutsouris D.
    Biochim Biophys Acta; 1984 Jan 25; 769(2):461-70. PubMed ID: 6696894
    [Abstract] [Full Text] [Related]

  • 9. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation.
    Dong C, Chadwick RS, Schechter AN.
    Biophys J; 1992 Sep 25; 63(3):774-83. PubMed ID: 1420913
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Modeling nonlinear red cell elasticity.
    Seifert U.
    Biophys J; 1998 Sep 25; 75(3):1141-2. PubMed ID: 9726915
    [No Abstract] [Full Text] [Related]

  • 12. Structure and deformation properties of red blood cells: concepts and quantitative methods.
    Evans EA.
    Methods Enzymol; 1989 Sep 25; 173():3-35. PubMed ID: 2674613
    [Abstract] [Full Text] [Related]

  • 13. Mechanical properties of the human red blood cell membrane at -15 degrees C.
    Thom F.
    Cryobiology; 2009 Aug 25; 59(1):24-7. PubMed ID: 19362084
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell.
    Parker KH, Winlove CP.
    Biophys J; 1999 Dec 25; 77(6):3096-107. PubMed ID: 10585931
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Amphiphile induced echinocyte-spheroechinocyte transformation of red blood cell shape.
    Iglic A, Kralj-Iglic V, Hägerstrand H.
    Eur Biophys J; 1998 Dec 25; 27(4):335-9. PubMed ID: 9691462
    [Abstract] [Full Text] [Related]

  • 20. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N, Bransky A, Dinnar U.
    J Biomech; 2007 Dec 25; 40(9):2088-95. PubMed ID: 17188279
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.