These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The relationship of visual evoked potentials to cortical physiology. Nakayama K. Ann N Y Acad Sci; 1982; 388():21-36. PubMed ID: 6807172 [No Abstract] [Full Text] [Related]
4. Sequential analysis of the visual evoked potential system in man: nonlinear analysis of a sandwich system. Spekreijse H, Reits D. Ann N Y Acad Sci; 1982; 388():72-97. PubMed ID: 6953907 [No Abstract] [Full Text] [Related]
5. Visual information channeling in normal and disordered vision. Regan D. Psychol Rev; 1982 Jul; 89(4):407-44. PubMed ID: 7134333 [No Abstract] [Full Text] [Related]
6. Retinotopic examinations with magneto encephalography. Single-channel recordings of visually evoked neuromagnetic fields. Schmidt B, Blum T. Dev Ophthalmol; 1984 Jul; 9():46-52. PubMed ID: 6526110 [No Abstract] [Full Text] [Related]
7. Role for human posterior parietal cortex in visual processing of aversive objects in peripersonal space. Lloyd D, Morrison I, Roberts N. J Neurophysiol; 2006 Jan; 95(1):205-14. PubMed ID: 16162829 [Abstract] [Full Text] [Related]
8. What simple and complex cells compute. Carandini M. J Physiol; 2006 Dec 01; 577(Pt 2):463-6. PubMed ID: 16973710 [No Abstract] [Full Text] [Related]
9. Differential aging of chromatic and achromatic visual pathways: behavior and electrophysiology. Page JW, Crognale MA. Vision Res; 2005 May 01; 45(11):1481-9. PubMed ID: 15743617 [Abstract] [Full Text] [Related]
10. Human visual processing as revealed by magnetoencephalography. Kaneoke Y, Watanabe S, Kakigi R. Int Rev Neurobiol; 2005 May 01; 68():197-222. PubMed ID: 16443015 [No Abstract] [Full Text] [Related]
11. Processing speed in recurrent visual networks correlates with general intelligence. Jolij J, Huisman D, Scholte S, Hamel R, Kemner C, Lamme VA. Neuroreport; 2007 Jan 08; 18(1):39-43. PubMed ID: 17259858 [Abstract] [Full Text] [Related]
13. Electroencephalographic evidence of sensory gating in the occipital visual cortex. Gjini K, Sundaresan K, Boutros NN. Neuroreport; 2008 Oct 08; 19(15):1519-22. PubMed ID: 18797309 [Abstract] [Full Text] [Related]
14. Early involvement of dorsal and ventral pathways in visual word recognition: an ERP study. Rosazza C, Cai Q, Minati L, Paulignan Y, Nazir TA. Brain Res; 2009 May 26; 1272():32-44. PubMed ID: 19332032 [Abstract] [Full Text] [Related]
15. In praise of artifice. Rust NC, Movshon JA. Nat Neurosci; 2005 Dec 26; 8(12):1647-50. PubMed ID: 16306892 [Abstract] [Full Text] [Related]
16. Comparative study on the offset responses of simple cells and complex cells in the primary visual cortex of the cat. Liang Z, Shen W, Sun C, Shou T. Neuroscience; 2008 Oct 02; 156(2):365-73. PubMed ID: 18723081 [Abstract] [Full Text] [Related]
17. [Evoked potentials and the conditioned negative wave in the comparison of sequentially presented visual stimuli]. Savchenko EI, Farber DA. Zh Vyssh Nerv Deiat Im I P Pavlova; 1988 Oct 02; 38(4):751-3. PubMed ID: 3195236 [No Abstract] [Full Text] [Related]
18. The extraction of features and disparities from images by a model based on the neurological organisation of the visual system. Harvey RJ. Vision Res; 2008 May 02; 48(11):1297-306. PubMed ID: 18417184 [Abstract] [Full Text] [Related]
19. Some new methods for the analysis of lateral interactions that influence the visual evoked potential. Ratliff F, Zemon V. Ann N Y Acad Sci; 1982 May 02; 388():113-24. PubMed ID: 6953864 [No Abstract] [Full Text] [Related]
20. [Effect of the angle of incidence of a photic stimulus on the duration of the positive phase of primary responses in the visual cortex]. Petrovskiĭ VV. Zh Vyssh Nerv Deiat Im I P Pavlova; 1980 May 02; 30(2):410-1. PubMed ID: 7386041 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]