These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


120 related items for PubMed ID: 6989955

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Carbohydrate metabolism by Actinomyces viscosus growing in continuous culture.
    Hamilton IR, Ellwood DC.
    Infect Immun; 1983 Oct; 42(1):19-26. PubMed ID: 6618664
    [Abstract] [Full Text] [Related]

  • 23. The role of energy-spilling reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture.
    Neijssel OM, Tempest DW.
    Arch Microbiol; 1976 Nov 02; 110(23):305-11. PubMed ID: 1015953
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Acetate scavenging activity in Escherichia coli: interplay of acetyl-CoA synthetase and the PEP-glyoxylate cycle in chemostat cultures.
    Renilla S, Bernal V, Fuhrer T, Castaño-Cerezo S, Pastor JM, Iborra JL, Sauer U, Cánovas M.
    Appl Microbiol Biotechnol; 2012 Mar 02; 93(5):2109-24. PubMed ID: 21881893
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Synthesis and Physicochemical Characterization of D-Tagatose-1-Phosphate: The Substrate of the Tagatose-1-Phosphate Kinase in the Phosphotransferase System-Mediated D-Tagatose Catabolic Pathway of Bacillus licheniformis.
    Van der Heiden E, Delmarcelle M, Simon P, Counson M, Galleni M, Freedberg DI, Thompson J, Joris B, Battistel MD.
    J Mol Microbiol Biotechnol; 2015 Mar 02; 25(2-3):106-19. PubMed ID: 26159072
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Phosphoenolpyruvate-dependent phosphorylation of sucrose by Clostridium tyrobutyricum ZJU 8235: evidence for the phosphotransferase transport system.
    Jiang L, Cai J, Wang J, Liang S, Xu Z, Yang ST.
    Bioresour Technol; 2010 Jan 02; 101(1):304-9. PubMed ID: 19726178
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Role of pyruvate oxidase in Escherichia coli strains lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system.
    Flores N, de Anda R, Flores S, Escalante A, Hernández G, Martínez A, Ramírez OT, Gosset G, Bolívar F.
    J Mol Microbiol Biotechnol; 2004 Jan 02; 8(4):209-21. PubMed ID: 16179798
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Effect of concentration of substrates and products on the growth of Klebsiella pneumoniae in chemostat cultures.
    Rutgers M, Balk PA, van Dam K.
    Biochim Biophys Acta; 1989 Nov 23; 977(2):142-9. PubMed ID: 2508755
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Microcalorimetry studies of energy changes during the growth of Klebsiella aerogenes in simple salts/glucose media. 1 Establishment of standard conditions.
    Nichols SC, Prichard FE, James AM.
    Microbios; 1979 Nov 23; 25(101-102):187-203. PubMed ID: 397402
    [Abstract] [Full Text] [Related]

  • 40. Correlation between depression of catabolite control of xylose metabolism and a defect in the phosphoenolpyruvate:mannose phosphotransferase system in Pediococcus halophilus.
    Abe K, Uchida K.
    J Bacteriol; 1989 Apr 23; 171(4):1793-800. PubMed ID: 2703460
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.