These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
116 related items for PubMed ID: 6995200
1. Lactose transport in Escherichia coli: effect of transmembrane potential difference on apparent substrate affinity. Wright JK, Overath P. Biochem Soc Trans; 1980 Jun; 8(3):279-81. PubMed ID: 6995200 [No Abstract] [Full Text] [Related]
2. Differences in uncoupling effects associated with the uptake of lactose and dansyl-galactoside in Escherichia coli membrane: active transport versus specific binding. Ghazi A, Therisod H, Shechter E. Arch Biochem Biophys; 1980 Jun; 202(1):126-36. PubMed ID: 6994654 [No Abstract] [Full Text] [Related]
3. Quantitative analysis of lactose transport in Escherichia coli. Booth IR. Biochem Soc Trans; 1980 Jun; 8(3):276-8. PubMed ID: 6995199 [No Abstract] [Full Text] [Related]
4. Energetics and mechanisms of lactose translocation in isolated membrane vesicles of Escherichia coli. Kaczorowski GJ, Robertson DE, Garcia ML, Padan E, Patel L, LeBlanc G, Kaback HR. Ann N Y Acad Sci; 1980 Jun; 358():307-21. PubMed ID: 7011148 [No Abstract] [Full Text] [Related]
5. Proton electrochemical gradient in Escherichia coli cells and its relation to active transport of lactose. Zilberstein D, Schuldiner S, Padan E. Biochemistry; 1979 Feb 20; 18(4):669-73. PubMed ID: 33700 [No Abstract] [Full Text] [Related]
6. Active transport in membrane vesicles from Escherichia coli: the electrochemical proton gradient alters the distribution of the lac carrier between two different kinetic states. Robertson DE, Kaczorowski GJ, Garcia ML, Kaback HR. Biochemistry; 1980 Dec 09; 19(25):5692-702. PubMed ID: 7006690 [No Abstract] [Full Text] [Related]
7. Lactose transport in Escherichia coli cells. Dependence of kinetic parameters on the transmembrane electrical potential difference. Ghazi A, Shechter E. Biochim Biophys Acta; 1981 Jun 22; 644(2):305-15. PubMed ID: 7020759 [Abstract] [Full Text] [Related]
8. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 1. Effect of pH on efflux, exchange, and counterflow. Kaczorowski GJ, Kaback HR. Biochemistry; 1979 Aug 21; 18(17):3691-7. PubMed ID: 38836 [No Abstract] [Full Text] [Related]
9. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 2. Effect of imposed delata psi, delta pH, and Delta mu H+. Kaczorowski GJ, Robertson DE, Kaback HR. Biochemistry; 1979 Aug 21; 18(17):3697-704. PubMed ID: 38837 [No Abstract] [Full Text] [Related]
10. Studies of the beta-galactoside transporter in inverted membrane vesicles of Escherichia coli. I. Symmetrical facilitated diffusion and proton gradient-coupled transport. Lancaster JR, Hinkle PC. J Biol Chem; 1977 Nov 10; 252(21):7657-61. PubMed ID: 21183 [Abstract] [Full Text] [Related]
11. Reconstitution of LAC carrier function in cholate-extracted membranes from Escherichia coli. Padan E, Schuldiner S, Kaback HR. Biochem Biophys Res Commun; 1979 Dec 14; 91(3):854-61. PubMed ID: 393263 [No Abstract] [Full Text] [Related]
12. Kinetics of lactose transport into Escherichia coli in the presence and absence of a protonmotive force. Page MG, West IC. FEBS Lett; 1980 Nov 03; 120(2):187-91. PubMed ID: 7002613 [No Abstract] [Full Text] [Related]
13. Direct measurement of lactose/proton symport in Escherichia coli membrane vesicles: further evidence for the involvement of histidine residue(s). Patel L, Garcia ML, Kaback HR. Biochemistry; 1982 Nov 09; 21(23):5805-10. PubMed ID: 6295442 [Abstract] [Full Text] [Related]
14. Substrate inhibition of lactose/proton symport in Escherichia coli. Page MG. Biochem Soc Trans; 1980 Dec 09; 8(6):704. PubMed ID: 7007120 [No Abstract] [Full Text] [Related]
15. Mechanism of lactose transport in Escherichia coli membrane vesicles: evidence for the involvement of histidine residue(s) in the response of the lac carrier to the proton electrochemical gradient. Garcia ML, Patel L, Padan E, Kaback HR. Biochemistry; 1982 Nov 09; 21(23):5800-5. PubMed ID: 6295441 [No Abstract] [Full Text] [Related]
16. Defective lactose utilization by a mutant of Escherichia coli energy-uncoupled for lactose transport. The advantages of active transport versus facilitated diffusion. Kusch M, Wilson TH. Biochim Biophys Acta; 1973 Jun 07; 311(1):109-22. PubMed ID: 4577939 [No Abstract] [Full Text] [Related]
17. Stoicheiometry of lactose-H+ symport across the plasma membrane of Escherichia coli. West IC, Mitchell P. Biochem J; 1973 Mar 07; 132(3):587-92. PubMed ID: 4579628 [Abstract] [Full Text] [Related]
18. pH-dependent changes in proton:substrate stoichiometries during active transport in Escherichia coli membrane vesicles. Ramos S, Kaback HR. Biochemistry; 1977 Sep 20; 16(19):4270-5. PubMed ID: 20136 [Abstract] [Full Text] [Related]
19. Membrane potential and active transport in membrane vesicles from Escherichia coli. Schuldiner S, Kaback HR. Biochemistry; 1975 Dec 16; 14(25):5451-61. PubMed ID: 172125 [No Abstract] [Full Text] [Related]
20. Absence of a unique relationship between active transport of lactose and protonmotive force in E. coli. Ghazi A, Delamourd L, Shechter E. FEBS Lett; 1986 Dec 15; 209(2):325-9. PubMed ID: 3025020 [Abstract] [Full Text] [Related] Page: [Next] [New Search]