These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


114 related items for PubMed ID: 7000180

  • 1. Kinetic studies of the mechanism of pyridine nucleotide dependent reduction of yeast glutathione reductase.
    Huber PW, Brandt KG.
    Biochemistry; 1980 Sep 30; 19(20):4569-75. PubMed ID: 7000180
    [No Abstract] [Full Text] [Related]

  • 2. Kinetic studies of the reduction of yeast glutathione reductase by reduced nicotinamide hypoxanthine dinucleotide phosphate.
    Huber PW, Brandt KG.
    Arch Biochem Biophys; 1985 Apr 30; 238(1):213-8. PubMed ID: 3885856
    [Abstract] [Full Text] [Related]

  • 3. Yeast glutathione reductase. I. Spectrophotometric and kinetic studies of its interaction with reduced nicotinamide adenine dinucleotide.
    Bulger JE, Brandt KG.
    J Biol Chem; 1971 Sep 25; 246(18):5570-7. PubMed ID: 4398524
    [No Abstract] [Full Text] [Related]

  • 4. Yeast glutathione reductase. Steady-state kinetic studies of its transhydrogenase activity.
    Moroff G, Ochs RS, Brandt KG.
    Arch Biochem Biophys; 1976 Mar 25; 173(1):42-9. PubMed ID: 4035
    [No Abstract] [Full Text] [Related]

  • 5. Yeast glutathione reductase. II. Interaction of oxidized and 2-electron reduced enzyme with reduced and oxidized nicotinamide adenine dinucleotide phosphate.
    Bulger JE, Brandt KG.
    J Biol Chem; 1971 Sep 25; 246(18):5578-87. PubMed ID: 4398525
    [No Abstract] [Full Text] [Related]

  • 6. Steady-state and laser flash induced photoreduction of yeast glutathione reductase by 5-deazariboflavin and by a viologen analogue: stabilization of flavin adenine dinucleotide semiquinone species by complexation.
    Navarro JA, Roncel M, Tollin G.
    Biochemistry; 1990 Jun 26; 29(25):6102-7. PubMed ID: 2383572
    [Abstract] [Full Text] [Related]

  • 7. Recognition site of yeast glutathione reductase for 2'-phosphate of NADP+.
    Tsai CS.
    Biochem Biophys Res Commun; 1984 Oct 30; 124(2):572-7. PubMed ID: 6388577
    [Abstract] [Full Text] [Related]

  • 8. Studies of 3-aminopyridine adenine dinucleotide phosphate.
    Anderson BM, Yuan JH, Vercellotti SV.
    Mol Cell Biochem; 1975 Aug 30; 8(2):89-96. PubMed ID: 241012
    [Abstract] [Full Text] [Related]

  • 9. Non-pyridine nucleotide dependent L-(plus)-glutamate oxidoreductase in Azotobacter vinelandii.
    Jurtshuk P, McManus L.
    Biochim Biophys Acta; 1974 Nov 19; 368(2):158-72. PubMed ID: 4154107
    [No Abstract] [Full Text] [Related]

  • 10. Probing the kinetic mechanism and coenzyme specificity of glutathione reductase from the cyanobacterium Anabaena PCC 7120 by redesign of the pyridine-nucleotide-binding site.
    Danielson UH, Jiang F, Hansson LO, Mannervik B.
    Biochemistry; 1999 Jul 20; 38(29):9254-63. PubMed ID: 10413499
    [Abstract] [Full Text] [Related]

  • 11. [The relation of glutathione reductase and diaphorase activity of glutathione reductase from Saccharomyces cerevisiae].
    Chenas NK, Rakauskene GA, Kulis IuIu.
    Biokhimiia; 1989 Jul 20; 54(7):1090-7. PubMed ID: 2679896
    [Abstract] [Full Text] [Related]

  • 12. Isocyanate inactivation of yeast glutathione reductase & its modulation by oxidised glutathione and NADPH.
    Baylor KJ, Heffron JJ.
    Biochem Soc Trans; 1996 May 20; 24(2):325S. PubMed ID: 8736983
    [No Abstract] [Full Text] [Related]

  • 13. Mouse-liver glutathione reductase. Purification, kinetics, and regulation.
    López-Barea J, Lee CY.
    Eur J Biochem; 1979 Aug 01; 98(2):487-99. PubMed ID: 39757
    [Abstract] [Full Text] [Related]

  • 14. Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions.
    Pinto MC, Mata AM, Lopez-Barea J.
    Arch Biochem Biophys; 1984 Jan 01; 228(1):1-12. PubMed ID: 6364985
    [Abstract] [Full Text] [Related]

  • 15. Studies on the in vitro inactivation of the Neurospora crassa assimilatory nitrite reductase in the presence of reduced pyridine nucleotides plus flavin.
    Vega JM, Greenbaum P, Garrett RH.
    Biochim Biophys Acta; 1975 Feb 19; 377(2):251-7. PubMed ID: 235301
    [Abstract] [Full Text] [Related]

  • 16. Role of Ser457 of NADPH-cytochrome P450 oxidoreductase in catalysis and control of FAD oxidation-reduction potential.
    Shen AL, Kasper CB.
    Biochemistry; 1996 Jul 23; 35(29):9451-9. PubMed ID: 8755724
    [Abstract] [Full Text] [Related]

  • 17. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ, Scrutton NS, Munro AW.
    Biochem J; 2003 Jun 01; 372(Pt 2):317-27. PubMed ID: 12614197
    [Abstract] [Full Text] [Related]

  • 18. Mammalian erythrocyte glutathione reductase: kinetic constants and saturation with cofactor.
    Harvey JW, Kaneko JJ.
    Am J Vet Res; 1975 Oct 01; 36(10):1511-3. PubMed ID: 242245
    [Abstract] [Full Text] [Related]

  • 19. Studies on a non-pyridine nucleotide dependent, membrane-bound L-(+)-glutamate oxidoreductase in Azotobacter vinelandii.
    Jurtshuk P, McManus L.
    Life Sci; 1973 Dec 16; 13(12):1725-36. PubMed ID: 4149668
    [No Abstract] [Full Text] [Related]

  • 20. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB, Klein M, Fulco A, Feyereisen R.
    Biochemistry; 1997 Jul 08; 36(27):8401-12. PubMed ID: 9204888
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.