These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


73 related items for PubMed ID: 7002158

  • 21. Reaction of phenylglyoxal with arginine. The effect of buffers and pH.
    Cheung ST, Fonda ML.
    Biochem Biophys Res Commun; 1979 Oct 12; 90(3):940-7. PubMed ID: 41527
    [No Abstract] [Full Text] [Related]

  • 22. Functional arginyl residues as ATP binding sites of glutamine synthetase and carbamyl phosphate synthetase.
    Powers SG, Riordan JF.
    Proc Natl Acad Sci U S A; 1975 Jul 12; 72(7):2616-20. PubMed ID: 241076
    [Abstract] [Full Text] [Related]

  • 23. A comparative study of essential arginine residues in Gramicidin S synthetase 2 and isoleucyl tRNA synthetase.
    Kanda M, Hori K, Miura S, Yamada Y, Saito Y.
    J Biochem; 1982 Dec 12; 92(6):1951-7. PubMed ID: 6761339
    [Abstract] [Full Text] [Related]

  • 24. Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein.
    Bjerrum PJ, Wieth JO, Borders CL.
    J Gen Physiol; 1983 Apr 12; 81(4):453-84. PubMed ID: 6854266
    [Abstract] [Full Text] [Related]

  • 25. Reduced anion-binding affinity of Cu,Zn superoxide dismutases chemically modified at arginine.
    Bermingham-McDonogh O, Mota de Freitas D, Kumamoto A, Saunders JE, Blech DM, Borders CL, Valentine JS.
    Biochem Biophys Res Commun; 1982 Oct 29; 108(4):1376-82. PubMed ID: 6758779
    [No Abstract] [Full Text] [Related]

  • 26. Diethyldithiocarbamate inhibits in vivo Cu,Zn-superoxide dismutase and perturbs free radical processes in the yeast Saccharomyces cerevisiae cells.
    Lushchak V, Semchyshyn H, Lushchak O, Mandryk S.
    Biochem Biophys Res Commun; 2005 Dec 30; 338(4):1739-44. PubMed ID: 16274662
    [Abstract] [Full Text] [Related]

  • 27. The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae: cloning, sequencing, and biological activity.
    Bermingham-McDonogh O, Gralla EB, Valentine JS.
    Proc Natl Acad Sci U S A; 1988 Jul 30; 85(13):4789-93. PubMed ID: 3290902
    [Abstract] [Full Text] [Related]

  • 28. Cu,Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells.
    Keller GA, Warner TG, Steimer KS, Hallewell RA.
    Proc Natl Acad Sci U S A; 1991 Aug 15; 88(16):7381-5. PubMed ID: 1651504
    [Abstract] [Full Text] [Related]

  • 29. Yeast 3-phosphoglycerate kinase. Essential arginyl residues at the 3-phosphoglycerate binding site.
    Philips M, Roustan C, Fattoum A, Pradel LA.
    Biochim Biophys Acta; 1978 Apr 12; 523(2):368-76. PubMed ID: 350284
    [Abstract] [Full Text] [Related]

  • 30. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal.
    Chollet R.
    Biochim Biophys Acta; 1981 Apr 14; 658(2):177-90. PubMed ID: 7248300
    [Abstract] [Full Text] [Related]

  • 31. Arginine modification by phenylglyoxal and (p-hydroxyphenyl)glyoxal: reaction rates and intermediates.
    Eun HM.
    Biochem Int; 1988 Oct 14; 17(4):719-27. PubMed ID: 3240319
    [Abstract] [Full Text] [Related]

  • 32. Chemical evidence for a functional arginine residue in carboxypeptidase B.
    Werber MM, Sokolovsky M.
    Biochem Biophys Res Commun; 1972 Jul 25; 48(2):384-90. PubMed ID: 5065066
    [No Abstract] [Full Text] [Related]

  • 33. The role of carboxyl, imidazole, and amino groups in inorganic pyrophosphatase of baker's yeast.
    Heitmann P, Uhlig HJ.
    Acta Biol Med Ger; 1974 Jul 25; 32(6):565-74. PubMed ID: 4371558
    [No Abstract] [Full Text] [Related]

  • 34. Effect of superoxide dismutase deficiency on the life span of the yeast Saccharomyces cerevisiae. An oxygen-independent role of Cu,Zn-superoxide dismutase.
    Wawryn J, Swieciło A, Bartosz G, Biliński T.
    Biochim Biophys Acta; 2002 Apr 15; 1570(3):199-202. PubMed ID: 12020810
    [Abstract] [Full Text] [Related]

  • 35. Anion transport in red blood cells and arginine-specific reagents. Interaction between the substrate-binding site and the binding site of arginine-specific reagents.
    Zaki L, Julien T.
    Biochim Biophys Acta; 1985 Sep 10; 818(3):325-32. PubMed ID: 4041441
    [Abstract] [Full Text] [Related]

  • 36. Binding of polyaminocarboxylate chelators to the active-site copper inhibits the GSNO-reductase activity but not the superoxide dismutase activity of Cu,Zn-superoxide dismutase.
    Ye M, English AM.
    Biochemistry; 2006 Oct 24; 45(42):12723-32. PubMed ID: 17042490
    [Abstract] [Full Text] [Related]

  • 37. BLOCKING OF TRYPTIC CLEAVAGE OF ARGINYL BONDS BY THE CHEMICAL MODIFICATION OF THE GUANIDO GROUP WITH BENZIL.
    ITANO HA, GOTTLIEB AJ.
    Biochem Biophys Res Commun; 1963 Aug 14; 12():405-8. PubMed ID: 14070354
    [No Abstract] [Full Text] [Related]

  • 38. Chemical properties of the anion transport inhibitory binding site of arginine-specific reagents in human red blood cell membranes.
    Julien T, Betakis E, Zaki L.
    Biochim Biophys Acta; 1990 Jul 09; 1026(1):43-50. PubMed ID: 2378880
    [Abstract] [Full Text] [Related]

  • 39. [Yeast superoxide dismutase: isolation and properties (review of the literature)].
    Kazanina GA, Selezneva AA.
    Prikl Biokhim Mikrobiol; 1992 Jul 09; 28(2):165-72. PubMed ID: 1594546
    [Abstract] [Full Text] [Related]

  • 40. The reactions of phenylglyoxal and related reagents with amino acids.
    Takahashi K.
    J Biochem; 1977 Feb 09; 81(2):395-402. PubMed ID: 14946
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 4.