These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


120 related items for PubMed ID: 7004440

  • 1. Regulation of mitochondrial biogenesis. Occurrence of non-functioning components of the mitochondrial respiratory chain in Saccharomyces cerevisiae grown in the presence of proteinase inhibitors: evidence for proteolytic control over assembly of the respiratory chain.
    Galkin AV, Tsoi TV, Luzikov VN.
    Biochem J; 1980 Jul 15; 190(1):145-56. PubMed ID: 7004440
    [Abstract] [Full Text] [Related]

  • 2. Abnormalities in mitochondrial respiratory chain assembly and their proteolytic elimination.
    Galkin AV, Tsoi TV, Luzikov VN.
    FEBS Lett; 1979 Jul 01; 103(1):111-3. PubMed ID: 381016
    [No Abstract] [Full Text] [Related]

  • 3. Development of mitochondrial membranes in anaerobically grown yeast cells.
    Nagata I, Furuya E, Yoshida Y, Kanaseki T, Tagawa K.
    J Biochem; 1975 Dec 01; 78(6):1353-64. PubMed ID: 131794
    [Abstract] [Full Text] [Related]

  • 4. [Degradation of intracellular proteins at different stages of growth of Saccharomyces cerevisiae].
    Bakalkin GIa, Kal'nov SL, Zubatov AS, Luzikov VN.
    Biokhimiia; 1976 Jul 01; 41(6):1121-6. PubMed ID: 800346
    [Abstract] [Full Text] [Related]

  • 5. Regulation of mitochondrial biogenesis: further evidence for proteinase involvement.
    Galkin AV, Tsoi TV, Luzikov VN.
    FEBS Lett; 1979 Sep 15; 105(2):373-5. PubMed ID: 385348
    [No Abstract] [Full Text] [Related]

  • 6. Proteolytic activities in yeast.
    Saheki T, Holzer H.
    Biochim Biophys Acta; 1975 Mar 28; 384(1):203-14. PubMed ID: 236769
    [Abstract] [Full Text] [Related]

  • 7. [Role of cell proteinases in the biogenesis of mitochondria].
    Luzikov VN, Makhlis TA, Galkin AV.
    Dokl Akad Nauk SSSR; 1976 Mar 28; 229(3):745-8. PubMed ID: 789035
    [No Abstract] [Full Text] [Related]

  • 8. Metabolic control analysis of the bc1 complex of Saccharomyces cerevisiae: effect on cytochrome c oxidase, respiration and growth rate.
    Boumans H, Berden JA, Grivell LA, van Dam K.
    Biochem J; 1998 May 01; 331 ( Pt 3)(Pt 3):877-83. PubMed ID: 9560317
    [Abstract] [Full Text] [Related]

  • 9. Changes in proteinase activities and subcellular distribution during inactivation of alcohol oxidase in Candida boidinii.
    Hill DJ, Jenkins RO, Cartledge TG, Lloyd D.
    Biochem J; 1986 Aug 15; 238(1):255-61. PubMed ID: 3541908
    [Abstract] [Full Text] [Related]

  • 10. Germination conditions that require mitochondrial function in Saccharomyces cerevisiae: utilization of acetate and galactose.
    Donnini C, Artoni N, Marmiroli N.
    J Bacteriol; 1986 Dec 15; 168(3):1250-3. PubMed ID: 3536869
    [Abstract] [Full Text] [Related]

  • 11. Lack of positive correlation between cell respiration and cytochrome content in galactose-grown Saccharomyces cerevisiae.
    Galkin AV, Makhils TA, Zubatov AS, Luzikov VN.
    FEBS Lett; 1975 Jul 15; 55(1):42-5. PubMed ID: 1095421
    [No Abstract] [Full Text] [Related]

  • 12. Characterization of the proteolytic activity firmly attached to yeast phoshoenolpyruvate carboxykinase.
    Beck I, Müller M, Holzer H.
    Biochim Biophys Acta; 1982 Jul 26; 705(2):163-6. PubMed ID: 7052135
    [Abstract] [Full Text] [Related]

  • 13. Glucose-induced inactivation of mitochondrial enzymes in the yeast Saccharomyces cerevisiae.
    Takeda M.
    Biochem J; 1981 Aug 15; 198(2):281-7. PubMed ID: 7034727
    [Abstract] [Full Text] [Related]

  • 14. Consequences of cytochrome c oxidase assembly defects for the yeast stationary phase.
    Dubinski AF, Camasta R, Soule TGB, Reed BH, Glerum DM.
    Biochim Biophys Acta Bioenerg; 2018 Jun 15; 1859(6):445-458. PubMed ID: 29567354
    [Abstract] [Full Text] [Related]

  • 15. Cardiolipin content of wild type and mutant yeasts in relation to mitochondrial function and development.
    Jakovcic S, Getz GS, Rabinowitz M, Jakob H, Swift H.
    J Cell Biol; 1971 Mar 15; 48(3):490-502. PubMed ID: 4322761
    [Abstract] [Full Text] [Related]

  • 16. Cytochrome synthesis in synchronous cultures of the yeast, Saccharomyces cerevisiae.
    Cottrell SF, Rabinowitz M, Getz GS.
    J Biol Chem; 1975 Jun 10; 250(11):4087-94. PubMed ID: 165191
    [Abstract] [Full Text] [Related]

  • 17. Yeast growth in raffinose results in resistance to acetic-acid induced programmed cell death mostly due to the activation of the mitochondrial retrograde pathway.
    Guaragnella N, Ždralević M, Lattanzio P, Marzulli D, Pracheil T, Liu Z, Passarella S, Marra E, Giannattasio S.
    Biochim Biophys Acta; 2013 Dec 10; 1833(12):2765-2774. PubMed ID: 23906793
    [Abstract] [Full Text] [Related]

  • 18. Low glucose but not galactose enhances oxidative mitochondrial metabolism in C2C12 myoblasts and myotubes.
    Elkalaf M, Anděl M, Trnka J.
    PLoS One; 2013 Dec 10; 8(8):e70772. PubMed ID: 23940640
    [Abstract] [Full Text] [Related]

  • 19. The use of phenylmethylsulfonyl fluoride in the study of catabolite inactivation and repression in intact cells of Saccharomyces cervisiae.
    Grossmann MK.
    Arch Microbiol; 1980 Feb 10; 124(2-3):293-5. PubMed ID: 6245626
    [Abstract] [Full Text] [Related]

  • 20. Cytochrome b-565 in Saccharomyces cerevisiae: use of mutants in the cob- box region of the mitochondrial DNA to study the functional role of this spectral species of cytochrome b. 2. Relationship between energetic data and cytochrome b-565 content.
    Chevillotte-Brivet P, Meunier-Lemesle D.
    Eur J Biochem; 1980 Oct 10; 111(1):161-9. PubMed ID: 7002557
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.