These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli. Kornberg HL, Lambourne LT, Sproul AA. Proc Natl Acad Sci U S A; 2000 Feb 15; 97(4):1808-12. PubMed ID: 10677538 [Abstract] [Full Text] [Related]
3. L-Sorbose metabolism in Klebsiella pneumoniae and Sor+ derivatives of Escherichia coli K-12 and chemotaxis toward sorbose. Sprenger GA, Lengeler JW. J Bacteriol; 1984 Jan 15; 157(1):39-45. PubMed ID: 6361004 [Abstract] [Full Text] [Related]
4. Evidence for a phosphoenolpyruvate dependent sugar-phosphotransferase system in the mollicute Acholeplasma florum. Navas-Castillo J, Laigret F, Hocquellet A, Chang CJ, Bove JM. Biochimie; 1993 Jan 15; 75(8):675-9. PubMed ID: 8286440 [Abstract] [Full Text] [Related]
5. Enzyme III stimulation of cyclic AMP synthesis in an Escherichia coli crp mutant. Daniel J. J Bacteriol; 1984 Mar 15; 157(3):940-1. PubMed ID: 6321447 [Abstract] [Full Text] [Related]
6. Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants. Koch S, Sutrina SL, Wu LF, Reizer J, Schnetz K, Rak B, Saier MH. J Bacteriol; 1996 Feb 15; 178(4):1126-33. PubMed ID: 8576048 [Abstract] [Full Text] [Related]
7. Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of enzyme I from Salmonella typhimurium. Weigel N, Waygood EB, Kukuruzinska MA, Nakazawa A, Roseman S. J Biol Chem; 1982 Dec 10; 257(23):14461-9. PubMed ID: 6754728 [No Abstract] [Full Text] [Related]
8. Identification of the N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system produced by proteolytic digestion. Lee BR, Lecchi P, Pannell L, Jaffe H, Peterkofsky A. Arch Biochem Biophys; 1994 Jul 10; 312(1):121-4. PubMed ID: 8031118 [Abstract] [Full Text] [Related]
9. Role of the phosphoenolpyruvate-dependent fructose phosphotransferase system in the utilization of mannose by Escherichia coli. Kornberg HL, Lambourne LT. Proc Biol Sci; 1992 Oct 22; 250(1327):51-5. PubMed ID: 1361062 [Abstract] [Full Text] [Related]
10. Resolution of the phosphoenolpyruvate: fructose phosphotransferase system of Escherichia coli into two components: enzyme IIfructose and fructose-induced HPr-like protein (FPr). Waygood EB. Can J Biochem; 1980 Oct 22; 58(10):1144-6. PubMed ID: 7006754 [Abstract] [Full Text] [Related]
11. Genes for l-sorbose utilization in Escherichia coli. Woodward MJ, Charles HP. J Gen Microbiol; 1982 Sep 22; 128(9):1969-80. PubMed ID: 6757380 [Abstract] [Full Text] [Related]
12. Evidence for the functional association of enzyme I and HPr of the phosphoenolpyruvate-sugar phosphotransferase system with the membrane in sealed vesicles of Escherichia coli. Saier MH, Cox DF, Feucht BU, Novotny MJ. J Cell Biochem; 1982 Sep 22; 18(2):231-8. PubMed ID: 7040430 [Abstract] [Full Text] [Related]
13. Allosteric regulation of glycerol kinase by enzyme IIIglc of the phosphotransferase system in Escherichia coli and Salmonella typhimurium. Novotny MJ, Frederickson WL, Waygood EB, Saier MH. J Bacteriol; 1985 May 22; 162(2):810-6. PubMed ID: 2985549 [Abstract] [Full Text] [Related]
14. [Mapping of the mutations within the genes coding for enzyme I and protein Hpr of the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli K-12. II. Mapping of the mutations within gene ptsH]. Rusina OIu, Gershanovich VN. Genetika; 1983 Mar 22; 19(3):397-405. PubMed ID: 6343184 [No Abstract] [Full Text] [Related]
15. Transient state kinetics of Enzyme I of the phosphoenolpyruvate:glycose phosphotransferase system of Escherichia coli: equilibrium and second-order rate constants for the phosphotransfer reactions with phosphoenolpyruvate and HPr. Meadow ND, Mattoo RL, Savtchenko RS, Roseman S. Biochemistry; 2005 Sep 27; 44(38):12790-6. PubMed ID: 16171394 [Abstract] [Full Text] [Related]
16. Molecular analysis of the phosphoenolpyruvate-dependent L-sorbose: phosphotransferase system from Klebsiella pneumoniae and of its multidomain structure. Wehmeier UF, Wöhrl BM, Lengeler JW. Mol Gen Genet; 1995 Mar 10; 246(5):610-8. PubMed ID: 7700234 [Abstract] [Full Text] [Related]
17. Enzyme I: the first protein and potential regulator of the bacterial phosphoenolpyruvate: glycose phosphotransferase system. Chauvin F, Brand L, Roseman S. Res Microbiol; 1996 Mar 10; 147(6-7):471-9. PubMed ID: 9084757 [No Abstract] [Full Text] [Related]
18. Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: role of divalent metals in the dimerization and phosphorylation of enzyme I. Hoving H, Koning JH, Robillard GT. Biochemistry; 1982 Jun 22; 21(13):3128-36. PubMed ID: 7049236 [Abstract] [Full Text] [Related]
19. Phosphorylation destabilizes the amino-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. Nosworthy NJ, Peterkofsky A, König S, Seok YJ, Szczepanowski RH, Ginsburg A. Biochemistry; 1998 May 12; 37(19):6718-26. PubMed ID: 9578555 [Abstract] [Full Text] [Related]
20. Importance of the region around glycine-338 for the activity of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. Seok YJ, Lee BR, Gazdar C, Svenson I, Yadla N, Peterkofsky A. Biochemistry; 1996 Jan 09; 35(1):236-42. PubMed ID: 8555180 [Abstract] [Full Text] [Related] Page: [Next] [New Search]