These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


136 related items for PubMed ID: 7030619

  • 21. Divalent metal ions control activity and inhibition of protein kinases.
    Knape MJ, Ballez M, Burghardt NC, Zimmermann B, Bertinetti D, Kornev AP, Herberg FW.
    Metallomics; 2017 Nov 15; 9(11):1576-1584. PubMed ID: 29043344
    [Abstract] [Full Text] [Related]

  • 22. Fluoride inhibition of enolase: crystal structure and thermodynamics.
    Qin J, Chai G, Brewer JM, Lovelace LL, Lebioda L.
    Biochemistry; 2006 Jan 24; 45(3):793-800. PubMed ID: 16411755
    [Abstract] [Full Text] [Related]

  • 23. Can monomers of yeast enolase have enzymatic activity?
    Kornblatt MJ, Lange R, Balny C.
    Eur J Biochem; 1998 Feb 01; 251(3):775-80. PubMed ID: 9490051
    [Abstract] [Full Text] [Related]

  • 24. Investigating the role of metal ions in the catalytic mechanism of the yeast RNA triphosphatase.
    Bisaillon M, Bougie I.
    J Biol Chem; 2003 Sep 05; 278(36):33963-71. PubMed ID: 12819229
    [Abstract] [Full Text] [Related]

  • 25. Isoionic titration and isopycnic density gradient centrifugation studies of magnesium activation and subunit dissociation in yeast enolase.
    Brewer JM.
    Arch Biochem Biophys; 1975 Dec 05; 171(2):466-73. PubMed ID: 961
    [No Abstract] [Full Text] [Related]

  • 26. Mechanism of enolase: the crystal structure of enolase-Mg2(+)-2-phosphoglycerate/phosphoenolpyruvate complex at 2.2-A resolution.
    Lebioda L, Stec B.
    Biochemistry; 1991 Mar 19; 30(11):2817-22. PubMed ID: 2007120
    [Abstract] [Full Text] [Related]

  • 27. Chelation of serine 39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-A resolution.
    Wedekind JE, Poyner RR, Reed GH, Rayment I.
    Biochemistry; 1994 Aug 09; 33(31):9333-42. PubMed ID: 8049235
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Structural dynamics of yeast hexokinase during catalysis.
    Steitz TA, Shoham M, Bennett WS.
    Philos Trans R Soc Lond B Biol Sci; 1981 Jun 26; 293(1063):43-52. PubMed ID: 6115422
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Metal binding to yeast aminopeptidase I.
    Röhm KH.
    Eur J Biochem; 1985 Feb 01; 146(3):633-9. PubMed ID: 3882418
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Studies of the activation of yeast enolase by metals using a "transition state analogue".
    Brewer JM.
    Biophys J; 1978 Oct 01; 24(1):53-5. PubMed ID: 708842
    [No Abstract] [Full Text] [Related]

  • 36. pH dependence of the reaction catalyzed by yeast Mg-enolase.
    Vinarov DA, Nowak T.
    Biochemistry; 1998 Oct 27; 37(43):15238-46. PubMed ID: 9790688
    [Abstract] [Full Text] [Related]

  • 37. An X-ray absorption spectroscopy study of the interactions of Ni2+ with yeast enolase.
    Wang S, Scott RA, Lebioda L, Zhou ZH, Brewer JM.
    J Inorg Biochem; 1995 May 15; 58(3):209-21. PubMed ID: 7782789
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Enzymatic function of loop movement in enolase: preparation and some properties of H159N, H159A, H159F, and N207A enolases.
    Brewer JM, Glover CV, Holland MJ, Lebioda L.
    J Protein Chem; 2003 May 15; 22(4):353-61. PubMed ID: 13678299
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.