These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 7031828

  • 1. [Time of toxin appearance in relation to detectable changes in canned meat artificially contaminated with Clostridium botulinum B (preliminary report)].
    Palec W, Mierzejewski J.
    Rocz Panstw Zakl Hig; 1981; 32(3):223-7. PubMed ID: 7031828
    [No Abstract] [Full Text] [Related]

  • 2. Toxin occurrence time in relation to sensorial changes in meat cans contaminated with Clostridium botulinum type B endospores.
    Palec W.
    Acta Microbiol Pol; 1996; 45(1):75-83. PubMed ID: 8795258
    [Abstract] [Full Text] [Related]

  • 3. Predictive modelling of food safety with particular reference to Clostridium botulinum in model cured meat systems.
    Roberts TA, Jarvis B.
    Soc Appl Bacteriol Symp Ser; 1983; 11():85-95. PubMed ID: 6359448
    [No Abstract] [Full Text] [Related]

  • 4. [Botulinum toxin in mixed cultures of sporulating anaerobes].
    Mierzejewski J, Skoczek A.
    Med Dosw Mikrobiol; 1977; 29(3):211-7. PubMed ID: 336998
    [No Abstract] [Full Text] [Related]

  • 5. [Bacteriological examinations of tinned fish contaminated with Cl. botulinum E after a 3-year storage].
    Skoczek A, Matras J.
    Med Weter; 1976 Dec; 32(12):754-6. PubMed ID: 797600
    [No Abstract] [Full Text] [Related]

  • 6. Toxin production by Clostridium botulinum types A and B in unpasteurized cured meat products held at 15 and 27 degrees C.
    Shigehisa T, Kozaki S, Sakaguchi G.
    Nihon Juigaku Zasshi; 1984 Dec; 46(6):917-20. PubMed ID: 6394862
    [No Abstract] [Full Text] [Related]

  • 7. [Value of the immunofluorescence test in the diagnosis of botulinum toxin poisoning in humans and animals. I. Identification of Clostridium botulinum type A, B, E, F and C in artificially infected industrial preserves by the indirect and direct immunofluorescence test].
    Anusz Z, Mierzejewski J, Skoczek A.
    Przegl Epidemiol; 1973 Dec; 27(2):173-81. PubMed ID: 4578517
    [No Abstract] [Full Text] [Related]

  • 8. Probabilistic representation of the exposure of consumers to Clostridium botulinum neurotoxin in a minimally processed potato product.
    Barker GC, Malakar PK, Del Torre M, Stecchini ML, Peck MW.
    Int J Food Microbiol; 2005 Apr 15; 100(1-3):345-57. PubMed ID: 15854717
    [Abstract] [Full Text] [Related]

  • 9. Effect of sodium ascorbate and sodium nitrite on toxin formation of Clostridium botulinum in wieners.
    Bowen VG, Cerveny JG, Deibel RH.
    Appl Microbiol; 1974 Mar 15; 27(3):605-6. PubMed ID: 4596392
    [Abstract] [Full Text] [Related]

  • 10. Effect of nitrite and nitrate on toxin production by Clostridium botulinum and on nitrosamine formation in perishable canned comminuted cured meat.
    Christiansen LN, Johnston RW, Kautter DA, Howard JW, Aunan WJ.
    Appl Microbiol; 1973 Mar 15; 25(3):357-62. PubMed ID: 4572891
    [Abstract] [Full Text] [Related]

  • 11. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing.
    Lindström M, Kiviniemi K, Korkeala H.
    Int J Food Microbiol; 2006 Apr 15; 108(1):92-104. PubMed ID: 16480785
    [Abstract] [Full Text] [Related]

  • 12. Prevalence of Clostridium species and behaviour of Clostridium botulinum in gnocchi, a REPFED of italian origin.
    Del Torre M, Stecchini ML, Braconnier A, Peck MW.
    Int J Food Microbiol; 2004 Nov 01; 96(2):115-31. PubMed ID: 15364467
    [Abstract] [Full Text] [Related]

  • 13. [Survey of pH and water activity in acidified bottled vegetables and meats (home processed) in relation to the potential growth of Clostridium botulinum].
    Mazzobre MF, Schebor C, Burin L, Chirife J.
    Rev Argent Microbiol; 2000 Nov 01; 32(2):63-70. PubMed ID: 10885005
    [Abstract] [Full Text] [Related]

  • 14. Effects of mastic resin and its essential oil on the growth of proteolytic Clostridium botulinum.
    Daifas DP, Smith JP, Blanchfield B, Sanders G, Austin JW, Koukoutisis J.
    Int J Food Microbiol; 2004 Aug 01; 94(3):313-22. PubMed ID: 15246242
    [Abstract] [Full Text] [Related]

  • 15. Establishment of a heat inactivation curve for Clostridium botulinum 62A toxin in beef broth.
    Losikoff ME.
    Appl Environ Microbiol; 1978 Aug 01; 36(2):386-8. PubMed ID: 29566
    [Abstract] [Full Text] [Related]

  • 16. Evaluation of the effect of acetylsalicylic acid on Clostridium botulinum growth and toxin production.
    Ma L, Zhang G, Sobel J, Doyle MP.
    J Food Prot; 2007 Dec 01; 70(12):2860-3. PubMed ID: 18095444
    [Abstract] [Full Text] [Related]

  • 17. [Extraction and concentration of Clostridium botulinum toxins from specimens (author's transl)].
    Sonnenschein B, Bisping W.
    Zentralbl Bakteriol Orig A; 1976 Mar 01; 234(2):247-59. PubMed ID: 5836
    [Abstract] [Full Text] [Related]

  • 18. [Evaluation of the usefulness of the indirect hemagglutination test for rapid detection of botulinum toxin in artificially contaminated food].
    Gabryś A, Bilecki S.
    Przegl Epidemiol; 1988 Mar 01; 42(3):234-42. PubMed ID: 3254555
    [No Abstract] [Full Text] [Related]

  • 19. Toxin production by Clostridium botulinum type E in fresh herring in relation to the measured oxidation potential (Eh).
    Huss HH, Shaeffer I, Petersen ER, Cann DC.
    Nord Vet Med; 1979 Feb 01; 31(2):81-6. PubMed ID: 370763
    [Abstract] [Full Text] [Related]

  • 20. Adsorption of Clostridium botulinum cultures of phage controlling type C botulinum toxin production.
    Oguma K, Iida H, Sugiyama H.
    Jpn J Med Sci Biol; 1979 Apr 01; 32(2):125-6. PubMed ID: 396393
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.