These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
202 related items for PubMed ID: 7036898
41. Germination, Outgrowth, and Vegetative-Growth Kinetics of Dry-Heat-Treated Individual Spores of Bacillus Species. He L, Chen Z, Wang S, Wu M, Setlow P, Li YQ. Appl Environ Microbiol; 2018 Apr 01; 84(7):. PubMed ID: 29330188 [Abstract] [Full Text] [Related]
42. Effects of temperature on activation, germination, and outgrowth of Bacillus megaterium spores. Levinson HS, Hyatt MT. J Bacteriol; 1970 Jan 01; 101(1):58-64. PubMed ID: 4983656 [Abstract] [Full Text] [Related]
43. Evaluation of the effect of oritavancin on Clostridium difficile spore germination, outgrowth and recovery. Chilton CH, Freeman J, Baines SD, Crowther GS, Nicholson S, Wilcox MH. J Antimicrob Chemother; 2013 Sep 01; 68(9):2078-82. PubMed ID: 23759507 [Abstract] [Full Text] [Related]
44. Enzymes of glucose and pyruvate catabolism in cells, spores, and germinated spores of Clostridium botulinum. SIMMONS RJ, COSTILOW RN. J Bacteriol; 1962 Dec 01; 84(6):1274-81. PubMed ID: 13977433 [Abstract] [Full Text] [Related]
45. Effect of prior refrigeration on botulinal outgrowth in perishable canned cured meat when temperature abused. Tompkin RB, Christiansen LN, Shaparis AB. Appl Environ Microbiol; 1978 May 01; 35(5):863-6. PubMed ID: 350155 [Abstract] [Full Text] [Related]
46. Procedure for cleaning of Clostridium botulinum spores. GRECZ N, ANELLIS A, SCHNEIDER MD. J Bacteriol; 1962 Sep 01; 84(3):552-8. PubMed ID: 13950051 [Abstract] [Full Text] [Related]
47. Canonical germinant receptor is dispensable for spore germination in Clostridium botulinum group II strain NCTC 11219. Clauwers C, Lood C, Van den Bergh B, van Noort V, Michiels CW. Sci Rep; 2017 Nov 13; 7(1):15426. PubMed ID: 29133849 [Abstract] [Full Text] [Related]
48. Impact of temperature, nutrients, pH and cold storage on the germination, growth and resistance of Bacillus cereus spores in egg white. Soni A, Oey I, Silcock P, Bremer PJ. Food Res Int; 2018 Apr 13; 106():394-403. PubMed ID: 29579940 [Abstract] [Full Text] [Related]
49. Activation and germination characteristics observed in endospores of thermophilic strains of Bacillus. Foerster HF. Arch Microbiol; 1983 Jun 13; 134(3):175-81. PubMed ID: 6615124 [Abstract] [Full Text] [Related]
50. Pathogenesis of Clostridium botulinum Type A: Study of In Vivo Toxin Release by Implantation of Diffusion Chambers Containing Spores, Vegetative Cells, and Free Toxin. Suzuki JB, Booth R, Benedik A, Grecz N. Infect Immun; 1971 May 13; 3(5):659-63. PubMed ID: 16558033 [Abstract] [Full Text] [Related]
51. Biology and genomic analysis of Clostridium botulinum. Peck MW. Adv Microb Physiol; 2009 May 13; 55():183-265, 320. PubMed ID: 19573697 [Abstract] [Full Text] [Related]
52. Factors influencing Clostridium botulinum spore germination, outgrowth, and toxin formation in acidified media. Wong DM, Young-Perkins KE, Merson RL. Appl Environ Microbiol; 1988 Jun 13; 54(6):1446-50. PubMed ID: 3046489 [Abstract] [Full Text] [Related]
53. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments. Van Opstal I, Bagamboula CF, Vanmuysen SC, Wuytack EY, Michiels CW. Int J Food Microbiol; 2004 Apr 15; 92(2):227-34. PubMed ID: 15109800 [Abstract] [Full Text] [Related]
54. Reduced germination of Clostridium botulinum type A spores in vitro by polymorphonuclear leukocytes from chronic granulomatous disease. Suzuki JB, Grecz N, Windhorst D. Infect Immun; 1971 Sep 15; 4(3):232-6. PubMed ID: 4949488 [Abstract] [Full Text] [Related]
55. Growth and formation of toxin by Clostridium botulinum in peeled, inoculated, vacuum-packed potatoes after a double pasteurization and storage at 25 degrees C. Lund BM, Graham AF, George SM. J Appl Bacteriol; 1988 Mar 15; 64(3):241-6. PubMed ID: 3290178 [Abstract] [Full Text] [Related]
56. Isolation, stability, and characteristics of high-pressure superdormant Bacillus subtilis spores. Delbrück AI, Zhang Y, Hug V, Trunet C, Mathys A. Int J Food Microbiol; 2021 Apr 02; 343():109088. PubMed ID: 33621831 [Abstract] [Full Text] [Related]
57. Spore germination and vegetative growth of Clostridium botulinum type E in synthetic media. Ward BQ, Carroll BJ. Can J Microbiol; 1966 Dec 02; 12(6):1145-56. PubMed ID: 5336410 [No Abstract] [Full Text] [Related]
58. Inhibition of germinant binding by bacterial spores in acidic environments. Blocher JC, Busta FF. Appl Environ Microbiol; 1985 Aug 02; 50(2):274-9. PubMed ID: 3931549 [Abstract] [Full Text] [Related]
59. Systematic Assessment of Nonproteolytic Clostridium botulinum Spores for Heat Resistance. Wachnicka E, Stringer SC, Barker GC, Peck MW. Appl Environ Microbiol; 2016 Oct 01; 82(19):6019-29. PubMed ID: 27474721 [Abstract] [Full Text] [Related]
60. Modelling the effect of sub(lethal) heat treatment of Bacillus subtilis spores on germination rate and outgrowth to exponentially growing vegetative cells. Smelt JP, Bos AP, Kort R, Brul S. Int J Food Microbiol; 2008 Nov 30; 128(1):34-40. PubMed ID: 18926580 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]