These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
129 related items for PubMed ID: 7047491
1. "Start" mutants of Saccharomyces cerevisiae are suppressed in carbon catabolite-derepressing medium. Shuster JR. J Bacteriol; 1982 Aug; 151(2):1059-61. PubMed ID: 7047491 [Abstract] [Full Text] [Related]
2. Mutations in cell division cycle genes CDC36 and CDC39 activate the Saccharomyces cerevisiae mating pheromone response pathway. de Barros Lopes M, Ho JY, Reed SI. Mol Cell Biol; 1990 Jun; 10(6):2966-72. PubMed ID: 2111445 [Abstract] [Full Text] [Related]
3. Mating-defective ste mutations are suppressed by cell division cycle start mutations in Saccharomyces cerevisiae. Shuster JR. Mol Cell Biol; 1982 Sep; 2(9):1052-63. PubMed ID: 6757719 [Abstract] [Full Text] [Related]
4. Influence of carbon catabolite repression on the G1 arrest of Saccharomyces cerevisiae MATa cells by alpha factor. Ruíz T, Villanueva JR, Rodríguez L. J Gen Microbiol; 1984 Feb; 130(2):337-42. PubMed ID: 6374021 [Abstract] [Full Text] [Related]
5. Isolation and transcriptional characterization of three genes which function at start, the controlling event of the Saccharomyces cerevisiae cell division cycle: CDC36, CDC37, and CDC39. Breter HJ, Ferguson J, Peterson TA, Reed SI. Mol Cell Biol; 1983 May; 3(5):881-91. PubMed ID: 6346060 [Abstract] [Full Text] [Related]
6. Suppression of temperature sensitive mutations in oncogene-related CDC genes in Saccharomyces cerevisiae by catabolite repression resistance and cytoplasmic petite mutations. Egilsson V, Gudnason V, Jonasdottir A, Andresdottir V. Curr Genet; 1985 May; 10(1):35-7. PubMed ID: 3940063 [Abstract] [Full Text] [Related]
7. CDC36 and CDC39 are negative elements in the signal transduction pathway of yeast. Neiman AM, Chang F, Komachi K, Herskowitz I. Cell Regul; 1990 Apr; 1(5):391-401. PubMed ID: 2099190 [Abstract] [Full Text] [Related]
10. The possible functional significance of phosphatidylinositol in G1 arrest of Saccharomyces cerevisiae. Dudani AK, Trivedi A, Prasad R. FEBS Lett; 1983 Mar 07; 153(1):34-6. PubMed ID: 6337878 [Abstract] [Full Text] [Related]
11. Catabolite inactivation of trehalose synthesis during growth of yeast on maltose. Paschoalin VM, Panek AC, Panek AD. Braz J Med Biol Res; 1987 Mar 07; 20(6):675-83. PubMed ID: 2843252 [Abstract] [Full Text] [Related]
12. Pachytene arrest and other meiotic effects of the start mutations in Saccharomyces cerevisiae. Shuster EO, Byers B. Genetics; 1989 Sep 07; 123(1):29-43. PubMed ID: 2680756 [Abstract] [Full Text] [Related]
14. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures. Aon MA, Cortassa S. Biotechnol Bioeng; 1998 Jul 20; 59(2):203-13. PubMed ID: 10099331 [Abstract] [Full Text] [Related]
15. New genes involved in carbon catabolite repression and derepression in the yeast Saccharomyces cerevisiae. Entian KD, Zimmermann FK. J Bacteriol; 1982 Sep 20; 151(3):1123-8. PubMed ID: 7050076 [Abstract] [Full Text] [Related]
16. On ras gene function in yeast. Fraenkel DG. Proc Natl Acad Sci U S A; 1985 Jul 20; 82(14):4740-4. PubMed ID: 3895224 [Abstract] [Full Text] [Related]
17. Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2. Hohmann S, Winderickx J, de Winde JH, Valckx D, Cobbaert P, Luyten K, de Meirsman C, Ramos J, Thevelein JM. Microbiology (Reading); 1999 Mar 20; 145 ( Pt 3)():703-714. PubMed ID: 10217505 [Abstract] [Full Text] [Related]
19. Carbon and energy uncoupling associated with cell cycle arrest of cdc mutants of Saccharomyces cerevisiae may be linked to glucose-induced catabolite repression. Mónaco ME, Valdecantos PA, Aon MA. Exp Cell Res; 1995 Mar 20; 217(1):52-6. PubMed ID: 7867720 [Abstract] [Full Text] [Related]