These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 7061206

  • 21. Comparison of d-aspartic acid contents in alpha A-crystallin from normal and age-matched cataractous human lenses.
    Fujii N, Takemoto LJ, Matsumoto S, Hiroki K, Boyle D, Akaboshi M.
    Biochem Biophys Res Commun; 2000 Nov 19; 278(2):408-13. PubMed ID: 11097850
    [Abstract] [Full Text] [Related]

  • 22. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification.
    Sanderson J, Marcantonio JM, Duncan G.
    Invest Ophthalmol Vis Sci; 2000 Jul 19; 41(8):2255-61. PubMed ID: 10892870
    [Abstract] [Full Text] [Related]

  • 23. Beta A3/A1 crystallin from human cataractous lens contains an intramolecular disulfide bond.
    Takemoto LJ.
    Curr Eye Res; 1997 Jul 19; 16(7):719-24. PubMed ID: 9222091
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. High molecular weight aggregates from human cataracts: characterization by Western blot analysis.
    Takemoto LJ, Hansen JS, Horwitz J.
    Biochem Biophys Res Commun; 1984 Aug 16; 122(3):1028-33. PubMed ID: 6477547
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Cholesterol, phospholipid, and protein changes in focal opacities in the human eye lens.
    Duindam JJ, Vrensen GF, Otto C, Greve J.
    Invest Ophthalmol Vis Sci; 1998 Jan 16; 39(1):94-103. PubMed ID: 9430550
    [Abstract] [Full Text] [Related]

  • 30. Partial characterization of three distinct populations of human gamma-crystallins.
    Zigler JS, Russell P, Takemoto LJ, Schwab SJ, Hansen JS, Horwitz J, Kinoshita JH.
    Invest Ophthalmol Vis Sci; 1985 Apr 16; 26(4):525-31. PubMed ID: 3980168
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Role of glycosylation in protein disulfide formation and cataractogenesis.
    Ansari NH, Awasthi YC, Srivastava SK.
    Exp Eye Res; 1980 Jul 16; 31(1):9-19. PubMed ID: 7428839
    [No Abstract] [Full Text] [Related]

  • 35. Disulfide cross-linking of urea-insoluble proteins in rabbit lenses treated with hyperbaric oxygen.
    Padgaonkar V, Giblin FJ, Reddy VN.
    Exp Eye Res; 1989 Nov 16; 49(5):887-99. PubMed ID: 2591503
    [Abstract] [Full Text] [Related]

  • 36. Role of proteins and cholesterol in human senile cataractogenesis.
    Yadav S, Mistry KP, Rawai UM.
    Indian J Ophthalmol; 1991 Nov 16; 39(1):17-9. PubMed ID: 1894337
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Disulfide bond formation of cysteine-37 and cysteine-66 of beta B2 crystallin during cataractogenesis of the human lens.
    Takemoto LJ.
    Exp Eye Res; 1997 Apr 16; 64(4):609-14. PubMed ID: 9227279
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. High galactose levels in vitro and in vivo impair ascorbate regeneration and increase ascorbate-mediated glycation in cultured rat lens.
    Saxena P, Saxena AK, Monnier VM.
    Exp Eye Res; 1996 Nov 16; 63(5):535-45. PubMed ID: 8994357
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.