These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


216 related items for PubMed ID: 7073671

  • 1. The chromaffin granule - plasma membrane interaction as a model for exocytosis: quantitative release of the soluble granular content.
    Konings F, De Potter W.
    Biochem Biophys Res Commun; 1982 Jan 15; 104(1):254-8. PubMed ID: 7073671
    [No Abstract] [Full Text] [Related]

  • 2. A role for sialic acid containing substrates in the exocytosis-like in vitro interaction between adrenal medullary plasma membranes and chromaffin granules.
    Konings F, De Potter W.
    Biochem Biophys Res Commun; 1982 Jun 30; 106(4):1191-5. PubMed ID: 6180748
    [No Abstract] [Full Text] [Related]

  • 3. Lysis of chromaffin granules by phospholipase A2-treated plasma membranes. A cell-free model for exocytosis in adrenal medulla.
    Izumi F, Yanagihara N, Wada A, Toyohira Y, Kobayashi H.
    FEBS Lett; 1986 Feb 17; 196(2):349-52. PubMed ID: 3949007
    [Abstract] [Full Text] [Related]

  • 4. The cell-free interaction between chromaffin granules and plasma membranes: an in vitro model for exocytosis?
    De Block J, De Potter W.
    Biochem Biophys Res Commun; 1987 Oct 29; 148(2):896-7. PubMed ID: 3689379
    [No Abstract] [Full Text] [Related]

  • 5. The chromaffin granule: recent studies leading to a functional model for exocytosis.
    Zinder O, Pollard HB.
    Essays Neurochem Neuropharmacol; 1980 Oct 29; 4():125-62. PubMed ID: 6993206
    [No Abstract] [Full Text] [Related]

  • 6. Dissection of stages in exocytosis in the adrenal chromaffin cell with use of trifluoperazine.
    Burgoyne RD, Geisow MJ, Barron J.
    Proc R Soc Lond B Biol Sci; 1982 Aug 23; 216(1202):111-5. PubMed ID: 6137823
    [Abstract] [Full Text] [Related]

  • 7. Exocytotic exposure and retrieval of membrane antigens of chromaffin granules: quantitative evaluation of immunofluorescence on the surface of chromaffin cells.
    Patzak A, Böck G, Fischer-Colbrie R, Schauenstein K, Schmidt W, Lingg G, Winkler H.
    J Cell Biol; 1984 May 23; 98(5):1817-24. PubMed ID: 6373784
    [Abstract] [Full Text] [Related]

  • 8. The chromaffin granule and possible mechanisms of exocytosis.
    Pollard HB, Pazoles CJ, Creutz CE, Zinder O.
    Int Rev Cytol; 1979 May 23; 58():159-97. PubMed ID: 391762
    [No Abstract] [Full Text] [Related]

  • 9. The molecular function of adrenal chromaffin granules: established facts and unresolved topics.
    Winkler H, Apps DK, Fischer-Colbrie R.
    Neuroscience; 1986 Jun 23; 18(2):261-90. PubMed ID: 2942794
    [No Abstract] [Full Text] [Related]

  • 10. Different osmotic stability of two storage pools of adrenomedullary catecholamines: possible relevance to exocytotic release of the hormones.
    Serck-Hanssen G.
    Acta Physiol Scand; 1984 Jan 23; 120(1):137-40. PubMed ID: 6720322
    [No Abstract] [Full Text] [Related]

  • 11. In vitro interaction between bovine adrenal medullary cell membranes and chromaffin granules: protein phosphorylation and ATP requirement.
    Konings F, De Potter W.
    Arch Int Pharmacodyn Ther; 1983 Apr 23; 262(2):315-6. PubMed ID: 6870395
    [No Abstract] [Full Text] [Related]

  • 12. The proteins of catecholamine-storing organelles.
    Winkler H.
    Scand J Immunol Suppl; 1982 Apr 23; 9():75-96. PubMed ID: 6190221
    [No Abstract] [Full Text] [Related]

  • 13. Acetylcholine-induced in vitro fusion between cell membrane vesicles and chromaffin granules from the bovine adrenal medulla.
    Lelkes PI, Lavie E, Naquira D, Schneeweiss F, Schneider AS, Rosenheck K.
    FEBS Lett; 1980 Jun 16; 115(1):129-33. PubMed ID: 7389913
    [No Abstract] [Full Text] [Related]

  • 14. Calcium-dependent in vitro interaction between bovine adrenal medullary cell membranes and chromaffin granules as a model for exocytosis.
    Konings F, De Potter W.
    FEBS Lett; 1981 Apr 06; 126(1):103-6. PubMed ID: 6786919
    [No Abstract] [Full Text] [Related]

  • 15. The chromaffin granule proton pump and calcium-dependent exocytosis in bovine adrenal medullary cells.
    Knight DE, Baker PF.
    J Membr Biol; 1985 Apr 06; 83(1-2):147-56. PubMed ID: 3873539
    [Abstract] [Full Text] [Related]

  • 16. Punctate appearance of dopamine-beta-hydroxylase on the chromaffin cell surface reflects the fusion of individual chromaffin granules upon exocytosis.
    Wick PF, Trenkle JM, Holz RW.
    Neuroscience; 1997 Oct 06; 80(3):847-60. PubMed ID: 9276499
    [Abstract] [Full Text] [Related]

  • 17. Role of intracellular proteins in the regulation of calcium action and transmitter release during exocytosis.
    Pollard HB, Pazoles CJ, Creutz CE, Zinder O.
    Monogr Neural Sci; 1980 Oct 06; 7():106-16. PubMed ID: 6112701
    [Abstract] [Full Text] [Related]

  • 18. Morphological characteristics and stimulus-secretion coupling in bovine adcrenal chromaffin cell cultures.
    Trifaró JM, Lee RW.
    Neuroscience; 1980 Oct 06; 5(9):1533-46. PubMed ID: 7422128
    [No Abstract] [Full Text] [Related]

  • 19. Dynamic aspects of chromaffin granule structure.
    Phillips JH.
    Neuroscience; 1982 Jul 06; 7(7):1595-609. PubMed ID: 6214726
    [No Abstract] [Full Text] [Related]

  • 20. An osmotic mechanism for exocytosis from dissociated chromaffin cells.
    Pollard HB, Pazoles CJ, Creutz CE, Scott JH, Zinder O, Hotchkiss A.
    J Biol Chem; 1984 Jan 25; 259(2):1114-21. PubMed ID: 6420400
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.