These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
142 related items for PubMed ID: 7074103
1. Pressure dependence of pyrene excimer fluorescence in human erythrocyte membranes. Flamm M, Okubo T, Turro NJ, Schachter D. Biochim Biophys Acta; 1982 Apr 23; 687(1):101-4. PubMed ID: 7074103 [Abstract] [Full Text] [Related]
2. Asymmetry of lipid dynamics in human erythrocyte membranes studied with impermeant fluorophores. Cogan U, Schachter D. Biochemistry; 1981 Oct 27; 20(22):6396-403. PubMed ID: 7306516 [Abstract] [Full Text] [Related]
7. Fluorescence decay of pyrene in small and large unilamellar L, alpha-dipalmitoylphosphatidylcholine vesicles above and below the phase transition temperature. Daems D, Van den Zegel M, Boens N, De Schryver FC. Eur Biophys J; 1985 Oct 27; 12(2):97-105. PubMed ID: 3839455 [Abstract] [Full Text] [Related]
8. Evidence that pyrene excimer formation in membranes is not diffusion-controlled. Blackwell MF, Gounaris K, Barber J. Biochim Biophys Acta; 1986 Jun 26; 858(2):221-34. PubMed ID: 3718977 [Abstract] [Full Text] [Related]
9. Lateral mobility of phospholipid and cholesterol in the human erythrocyte membrane: effects of protein-lipid interactions. Golan DE, Alecio MR, Veatch WR, Rando RR. Biochemistry; 1984 Jan 17; 23(2):332-9. PubMed ID: 6696882 [Abstract] [Full Text] [Related]
13. Protein penetration as a tool for the investigation of Langmuir films derived from erythrocytes. Tredgold RH, O'Mullane JE. FEBS Lett; 1980 Aug 11; 117(1):273-6. PubMed ID: 7409174 [No Abstract] [Full Text] [Related]
14. Multiple thermotropic state transitions in erythrocyte membranes. A laser-Raman study of the CH-stretching and acoustical regions. Verma SP, Wallach DF. Biochim Biophys Acta; 1976 Jun 17; 436(2):307-18. PubMed ID: 945074 [Abstract] [Full Text] [Related]
15. Hydrocarbon phase transitions and lipid-protein interactions in the erythrocyte membrane. A 31P NMR and fluorescence study. Cullis PR, Grathwohl C. Biochim Biophys Acta; 1977 Dec 01; 471(2):213-26. PubMed ID: 921979 [No Abstract] [Full Text] [Related]
17. Oxygen quenching of pyrene-lipid fluorescence in phosphatidylcholine vesicles. A probe for membrane organization. Chong PL, Thompson TE. Biophys J; 1985 May 01; 47(5):613-21. PubMed ID: 4016182 [Abstract] [Full Text] [Related]
18. Fluorescence lifetime distributions of 1,6-diphenyl-1,3,5-hexatriene reveal the effect of cholesterol on the microheterogeneity of erythrocyte membrane. Fiorini RM, Valentino M, Glaser M, Gratton E, Curatola G. Biochim Biophys Acta; 1988 Apr 22; 939(3):485-92. PubMed ID: 3355828 [Abstract] [Full Text] [Related]
19. Exploration of physical principles underlying lipid regular distribution: effects of pressure, temperature, and radius of curvature on E/M dips in pyrene-labeled PC/DMPC binary mixtures. Chong PL, Tang D, Sugar IP. Biophys J; 1994 Jun 22; 66(6):2029-38. PubMed ID: 8075336 [Abstract] [Full Text] [Related]
20. Reduced lateral mobility of a fluorescent lipid probe in cholesterol-depleted erythrocyte membrane. Thompson NL, Axelrod D. Biochim Biophys Acta; 1980 Mar 27; 597(1):155-65. PubMed ID: 6892784 [Abstract] [Full Text] [Related] Page: [Next] [New Search]