These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
231 related items for PubMed ID: 7081438
1. Na and K transport across the cortical and outer medullary collecting tubule of the rabbit: evidence for diffusion across the outer medullary portion. Stokes JB. Am J Physiol; 1982 May; 242(5):F514-20. PubMed ID: 7081438 [Abstract] [Full Text] [Related]
2. Heterogeneity of the rabbit collecting tubule: localization of mineralocorticoid hormone action to the cortical portion. Stokes JB, Ingram MJ, Williams AD, Ingram D. Kidney Int; 1981 Sep; 20(3):340-7. PubMed ID: 7300123 [Abstract] [Full Text] [Related]
4. Patterns of K+ permeation following inhibition of Na+ transport in rabbit cortical collecting tubule. Stokes JB. Am J Physiol; 1986 Jan; 250(1 Pt 2):F120-6. PubMed ID: 3455800 [Abstract] [Full Text] [Related]
5. Potassium secretion by the cortical collecting tubule: effect of C1 gradients and ouabain. Wingo CS. Am J Physiol; 1989 Feb; 256(2 Pt 2):F306-13. PubMed ID: 2916662 [Abstract] [Full Text] [Related]
6. Na+ transport properties of the peritubular membrane of cortical collecting tubule. Natke E, Stoner LC. Am J Physiol; 1982 Jun; 242(6):F664-71. PubMed ID: 7091320 [Abstract] [Full Text] [Related]
7. Cellular K+ permeation across the cortical collecting tubule: effects of Na+-K+ pump inhibition and membrane depolarization. Stokes JB. Am J Physiol; 1984 Apr; 246(4 Pt 2):F467-75. PubMed ID: 6326592 [Abstract] [Full Text] [Related]
8. Secondary effect of aldosterone on Na-KATPase activity in the rabbit cortical collecting tubule. Petty KJ, Kokko JP, Marver D. J Clin Invest; 1981 Dec; 68(6):1514-21. PubMed ID: 6274911 [Abstract] [Full Text] [Related]
13. Pathways of K+ permeation across the rabbit cortical collecting tubule: effect of amiloride. Stokes JB. Am J Physiol; 1984 Apr; 246(4 Pt 2):F457-66. PubMed ID: 6720902 [Abstract] [Full Text] [Related]
14. Hydrogen transport in papillary collecting duct of rabbit kidney. Prigent A, Bichara M, Paillard M. Am J Physiol; 1985 Mar; 248(3 Pt 1):C241-6. PubMed ID: 2579570 [Abstract] [Full Text] [Related]
15. Direct fluorescence measurement of diffusional water permeability in the vasopressin-sensitive kidney collecting tubule. Kuwahara M, Verkman AS. Biophys J; 1988 Oct; 54(4):587-93. PubMed ID: 3224144 [Abstract] [Full Text] [Related]
16. Effect of epidermal growth factor on sodium transport in the cortical collecting tubule. Vehaskari VM, Hering-Smith KS, Moskowitz DW, Weiner ID, Hamm LL. Am J Physiol; 1989 May; 256(5 Pt 2):F803-9. PubMed ID: 2655477 [Abstract] [Full Text] [Related]
17. Volume regulation following Na+ pump inhibition in CCT principal cells: apical K+ loss. Strange K. Am J Physiol; 1990 Mar; 258(3 Pt 2):F732-40. PubMed ID: 2156450 [Abstract] [Full Text] [Related]
18. Functional profile of the isolated uremic nephron: potassium adaptation in the rabbit cortical collecting tubule. Fine LG, Yanagawa N, Schultze RG, Tuck M, Trizna W. J Clin Invest; 1979 Oct; 64(4):1033-43. PubMed ID: 225350 [Abstract] [Full Text] [Related]
19. Reversible chloride-dependent potassium flux across the rabbit cortical collecting tubule. Wingo CS. Am J Physiol; 1989 Apr; 256(4 Pt 2):F697-704. PubMed ID: 2705540 [Abstract] [Full Text] [Related]
20. Modulation of renal sodium-potassium-adenosine triphosphatase by aldosterone. Effect of high physiologic levels on enzyme activity in isolated rat and rabbit tubules. Mujais SK, Chekal MA, Jones WJ, Hayslett JP, Katz AI. J Clin Invest; 1985 Jul; 76(1):170-6. PubMed ID: 2991336 [Abstract] [Full Text] [Related] Page: [Next] [New Search]