These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


207 related items for PubMed ID: 7085754

  • 1. Role of the reticulum in the stability and shape of the isolated human erythrocyte membrane.
    Lange Y, Hadesman RA, Steck TL.
    J Cell Biol; 1982 Mar; 92(3):714-21. PubMed ID: 7085754
    [Abstract] [Full Text] [Related]

  • 2. Role of the bilayer in the shape of the isolated erythrocyte membrane.
    Lange Y, Gough A, Steck TL.
    J Membr Biol; 1982 Mar; 69(2):113-23. PubMed ID: 7131536
    [Abstract] [Full Text] [Related]

  • 3. Loss of resealing ability in erythrocyte membranes. Effect of divalent cations and spectrin release.
    Johnson RM, Kirkwood DH.
    Biochim Biophys Acta; 1978 May 04; 509(1):58-66. PubMed ID: 647009
    [Abstract] [Full Text] [Related]

  • 4. Relationship of hemolysis buffer structure, pH and ionic strength to spontaneous contour smoothing of isolated erythrocyte membranes.
    Raval PJ, Carter DP, Fairbanks G.
    Biochim Biophys Acta; 1989 Aug 07; 983(2):230-40. PubMed ID: 2758059
    [Abstract] [Full Text] [Related]

  • 5. Intramembrane particle aggregation in erythrocyte membranes and band 3-lipid recombinants.
    Yu J, Elgsaeter A, Branton D.
    Prog Clin Biol Res; 1977 Aug 07; 17():453-8. PubMed ID: 22086
    [Abstract] [Full Text] [Related]

  • 6. Effect of antibodies to membrane skeletal proteins on the shape of erythrocytes and their ability to respond to shape-modulating agents. Important role of 4.1 protein in the determination/maintenance of the discoid shape of erythrocytes.
    Pestonjamasp KN, Mehta NG.
    Exp Cell Res; 1995 Jul 07; 219(1):74-81. PubMed ID: 7628552
    [Abstract] [Full Text] [Related]

  • 7. Separation of the lipid bilayer from the membrane skeleton during discocyte-echinocyte transformation of human erythrocyte ghosts.
    Liu SC, Derick LH, Duquette MA, Palek J.
    Eur J Cell Biol; 1989 Aug 07; 49(2):358-65. PubMed ID: 2776779
    [Abstract] [Full Text] [Related]

  • 8. Involvement of spectrin in membrane fusion: induction of fusion in human erythrocyte ghosts by proteolytic enzymes and its inhibition by antispectrin antibody.
    Lalazar A, Loyter A.
    Proc Natl Acad Sci U S A; 1979 Jan 07; 76(1):318-22. PubMed ID: 218196
    [Abstract] [Full Text] [Related]

  • 9. Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: evidence for control by cytoskeletal interactions.
    Golan DE, Veatch W.
    Proc Natl Acad Sci U S A; 1980 May 07; 77(5):2537-41. PubMed ID: 6930650
    [Abstract] [Full Text] [Related]

  • 10. Selective association of spectrin with the cytoplasmic surface of human erythrocyte plasma membranes. Quantitative determination with purified (32P)spectrin.
    Bennett V, Branton D.
    J Biol Chem; 1977 Apr 25; 252(8):2753-63. PubMed ID: 15998
    [Abstract] [Full Text] [Related]

  • 11. Participation of spectrin in Sendai virus-induced fusion of human erythrocyte ghosts.
    Sekiguchi K, Asano A.
    Proc Natl Acad Sci U S A; 1978 Apr 25; 75(4):1740-4. PubMed ID: 205869
    [Abstract] [Full Text] [Related]

  • 12. [Molecular interactions of membrane proteins and erythrocyte deformability].
    Boivin P.
    Pathol Biol (Paris); 1984 Jun 25; 32(6):717-35. PubMed ID: 6235477
    [Abstract] [Full Text] [Related]

  • 13. Reconstitution of intramembrane particles in recombinants of erythrocyte protein band 3 and lipid: effects of spectrin-actin association.
    Yu J, Branton D.
    Proc Natl Acad Sci U S A; 1976 Nov 25; 73(11):3891-5. PubMed ID: 1069273
    [Abstract] [Full Text] [Related]

  • 14. A dynamical study on the interactions between the cytoskeleton components in the human erythrocyte as detected by saturation transfer electron paramagnetic resonance of spin-labeled spectrin, ankyrin, and protein 4.1.
    Dubreuil YL, Cassoly R.
    Arch Biochem Biophys; 1983 Jun 25; 223(2):495-502. PubMed ID: 6305282
    [Abstract] [Full Text] [Related]

  • 15. Irreversible deformation of the spectrin-actin lattice in irreversibly sickled cells.
    Lux SE, John KM, Karnovsky MJ.
    J Clin Invest; 1976 Oct 25; 58(4):955-63. PubMed ID: 965498
    [Abstract] [Full Text] [Related]

  • 16. Atomic force microscopy of the erythrocyte membrane skeleton.
    Swihart AH, Mikrut JM, Ketterson JB, Macdonald RC.
    J Microsc; 2001 Dec 25; 204(Pt 3):212-25. PubMed ID: 11903798
    [Abstract] [Full Text] [Related]

  • 17. Spectrin phosphorylation and shape change of human erythrocyte ghosts.
    Patel VP, Fairbanks G.
    J Cell Biol; 1981 Feb 25; 88(2):430-40. PubMed ID: 7204501
    [Abstract] [Full Text] [Related]

  • 18. Hemolytic anemias associated with deficient or dysfunctional spectrin.
    Lux SE, Pease B, Tomaselli MB, John KM, Bernstein SE.
    Prog Clin Biol Res; 1979 Feb 25; 30():463-9. PubMed ID: 531037
    [Abstract] [Full Text] [Related]

  • 19. Membrane perturbations of erythrocyte ghosts by spectrin release.
    Yamaguchi T, Ozaki S, Shimomura T, Terada S.
    J Biochem; 2007 May 25; 141(5):747-54. PubMed ID: 17387121
    [Abstract] [Full Text] [Related]

  • 20. Hereditary spherocytosis of man. Altered binding of cytoskeletal components to the erythrocyte membrane.
    Hill JS, Sawyer WH, Howlett GJ, Wiley JS.
    Biochem J; 1982 Feb 01; 201(2):259-66. PubMed ID: 7082289
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.