These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


80 related items for PubMed ID: 708706

  • 1. Nuclear magnetic resonance investigation of the interaction of a 13C-labeled quinacrine derivative with DNA.
    Davidson MW, Griggs BG, Lopp IG, Boykin DW, Wilson WD.
    Biochemistry; 1978 Oct 03; 17(20):4220-5. PubMed ID: 708706
    [No Abstract] [Full Text] [Related]

  • 2. The interaction of propidium diiodide with self-complementary dinucleoside monophosphates.
    Davidson MW, Griggs BG, Lopp IG, Wilson WD.
    Biochim Biophys Acta; 1977 Dec 14; 479(4):378-90. PubMed ID: 922007
    [Abstract] [Full Text] [Related]

  • 3. Concerning steric effects in antimalarial agents.
    Newman MS.
    Drug Des Deliv; 1987 May 14; 1(4):307-12. PubMed ID: 3334542
    [Abstract] [Full Text] [Related]

  • 4. High-field 13C nuclear magnetic resonance studies at 90.5 MHz of the basic pancreatic trypsin inhibitor.
    Richarz R, Wüthrich K.
    Biochemistry; 1978 Jun 13; 17(12):2263-9. PubMed ID: 307962
    [No Abstract] [Full Text] [Related]

  • 5. Structural dynamics of transfer ribonucleic acid: carbon-13 nuclear magnetic resonance of [13C]methyl-enriched pure species.
    Kopper RA, Schmidt PG, Agris PF.
    Biochemistry; 1983 Mar 15; 22(6):1396-401. PubMed ID: 6188487
    [No Abstract] [Full Text] [Related]

  • 6. Carbon-13 nuclear magnetic resonance studies of the binding of selectively 13C-enriched oxytocins to the neurophypophyseal protein, bovine neurophysin II.
    Griffin JH, DiBello C, Alazard R, Nicolas P, Cohen P.
    Biochemistry; 1977 Sep 20; 16(19):4194-8. PubMed ID: 561612
    [Abstract] [Full Text] [Related]

  • 7. Complete nuclear magnetic resonance signal assignments and initial structural studies of [13C]methyl-enriched yeast transfer ribonucleic acid.
    Agris PF, Kovacs SA, Smith C, Kopper RA, Schmidt PG.
    Biochemistry; 1983 Mar 15; 22(6):1402-8. PubMed ID: 6188488
    [No Abstract] [Full Text] [Related]

  • 8. Chemical modification of ribonucleic acid. A direct study by carbon-13 nuclear magnetic resonance spectroscopy.
    Chang C, Lee CG.
    Biochemistry; 1981 Apr 28; 20(9):2657-61. PubMed ID: 7236629
    [Abstract] [Full Text] [Related]

  • 9. Interaction of actinomycin D, ethidium, quinacrine, daunorubicin, and tetralysine with DNA: 31P NMR chemical shift and relaxation investigation.
    Wilson WD, Jones RL.
    Nucleic Acids Res; 1982 Feb 25; 10(4):1399-410. PubMed ID: 7071016
    [Abstract] [Full Text] [Related]

  • 10. Nuclear magnetic resonance spectroscopy. Benzene-13C.
    Weigert FJ, Roberts JD.
    J Am Chem Soc; 1967 Jun 07; 89(12):2967-9. PubMed ID: 6043812
    [No Abstract] [Full Text] [Related]

  • 11. [13C-nuclear magnetic resonance of nitro compounds and triazenes produced by decomposition of trisubstituted nitrosoureas].
    Sueyoshi S, Tanno M.
    Eisei Shikenjo Hokoku; 1984 Jun 07; (102):108-12. PubMed ID: 6532492
    [No Abstract] [Full Text] [Related]

  • 12. [Structural analysis of 1-phenylazo-2-naphthols--A 13C-nuclear magnetic resonance study].
    Miyahara M.
    Eisei Shikenjo Hokoku; 1982 Jun 07; (100):135-8. PubMed ID: 7183374
    [No Abstract] [Full Text] [Related]

  • 13. Microenvironment of histidine 12 in ribonuclease-S as detected by 13C nuclear magnetic resonance.
    Chaiken IM, Cohen JS, Sokoloski EA.
    J Am Chem Soc; 1974 Jul 10; 96(14):4703-5. PubMed ID: 4853212
    [No Abstract] [Full Text] [Related]

  • 14. Mass spectrometry and 13C nuclear magnetic resonance spectroscopy of compounds modeling the glycopeptide linkage of glycoproteins.
    Blumberg K, Bush CA.
    Anal Biochem; 1982 Jan 15; 119(2):397-406. PubMed ID: 7072958
    [No Abstract] [Full Text] [Related]

  • 15. Metabolic regulation in Streptomyces parvulus during actinomycin D synthesis, studied with 13C- and 15N-labeled precursors by 13C and 15N nuclear magnetic resonance spectroscopy and by gas chromatography-mass spectrometry.
    Inbar L, Lapidot A.
    J Bacteriol; 1988 Sep 15; 170(9):4055-64. PubMed ID: 3410824
    [Abstract] [Full Text] [Related]

  • 16. Cyclic peptides. 8. 13C and 1H nuclear magnetic resonance evidence for slow cis'-trans' rotation in a cyclic tetrapeptide.
    Dober CM, Fossel ET, Blout ER.
    J Am Chem Soc; 1974 Jun 12; 96(12):4015-7. PubMed ID: 4851238
    [No Abstract] [Full Text] [Related]

  • 17. Carbon-13 nuclear magnetic resonance spectra of D-homoannulated 17-hydroxypregnan-20-ones.
    Draper RW, Puar MS.
    Steroids; 1989 Jul 12; 54(1):1-10. PubMed ID: 2815154
    [Abstract] [Full Text] [Related]

  • 18. 13C-NMR of Clostridium pasteurianum ferredoxin after reductive methylation of the amines using [13C]formaldehyde.
    Gluck M, Sweeney WV.
    Biochim Biophys Acta; 1990 Apr 19; 1038(2):146-51. PubMed ID: 2331479
    [Abstract] [Full Text] [Related]

  • 19. 13C and 1H nuclear magnetic resonance studies of bradykinin and selected peptide fragments.
    London RE, Stewart JM, Cann JR, Matwiyoff NA.
    Biochemistry; 1978 Jun 13; 17(12):2270-7. PubMed ID: 28141
    [No Abstract] [Full Text] [Related]

  • 20. An investigation of the conformational and self-aggregational processes of histones using 1H and 13C nuclear magnetic resonance.
    Lilley DM, Howarth OW, Clark VW, Pardon JF, Richards BM.
    Biochemistry; 1975 Oct 21; 14(21):4590-600. PubMed ID: 1182105
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.