These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
91 related items for PubMed ID: 7091393
1. Effect of Na+ and ATP on peritubular Ca transport by the marine teleost renal tubule. Renfro JL, Dickman KG, Miller DS. Am J Physiol; 1982 Jul; 243(1):R34-41. PubMed ID: 7091393 [Abstract] [Full Text] [Related]
6. Taurine transport by isolated flounder renal tubules. King PA, Beyenbach KW, Goldstein L. J Exp Zool; 1982 Oct 10; 223(2):103-14. PubMed ID: 7142940 [Abstract] [Full Text] [Related]
7. What are the driving forces for the proximal tubular H+ and Ca++ transport? The electrochemical gradient for Na+ and/or ATP. Ullrich KJ, Frömter E, Gmaj P, Kinne R, Murer H. Curr Probl Clin Biochem; 1982 Oct 10; 8():170-7. PubMed ID: 28898 [Abstract] [Full Text] [Related]
9. Ca++-transport across basal-lateral plasma membranes from rat small intestinal epithelial cells. Hildmann B, Schmidt A, Murer H. J Membr Biol; 1982 Oct 10; 65(1-2):55-62. PubMed ID: 6799650 [Abstract] [Full Text] [Related]
10. Evidence against parallel operation of sodium/calcium antiport and ATP-driven calcium transport in plasma membrane vesicles from kidney tubule cells. Schönfeld W, Menke KH, Schönfeld R, Repke KR. Biochim Biophys Acta; 1984 Mar 14; 770(2):183-94. PubMed ID: 6320885 [Abstract] [Full Text] [Related]
11. Sodium gradient-driven transport processes in ATP-depleted renal tubules. Blumenthal SS, Ware RA, Kleinman JG. Am J Physiol; 1983 May 14; 244(5):C331-5. PubMed ID: 6846524 [Abstract] [Full Text] [Related]
12. Characterization of calcium transport by basolateral membrane vesicles of human small intestine. Kikuchi K, Kikuchi T, Ghishan FK. Am J Physiol; 1988 Oct 14; 255(4 Pt 1):G482-9. PubMed ID: 3140674 [Abstract] [Full Text] [Related]
13. Calcium transport in canine renal basolateral membrane vesicles. Effects of parathyroid hormone. Scoble JE, Mills S, Hruska KA. J Clin Invest; 1985 Apr 14; 75(4):1096-105. PubMed ID: 3988932 [Abstract] [Full Text] [Related]
14. Effects of ATP on Na+ transport and membrane potential in inside-out renal basolateral vesicles. Boumendil-Podevin EF, Podevin RA. Biochim Biophys Acta; 1983 Feb 09; 728(1):39-49. PubMed ID: 6830772 [Abstract] [Full Text] [Related]
15. The ins and outs of calcium transport in squid axons: internal and external ion activation of calcium efflux. Blaustein MP. Fed Proc; 1976 Dec 09; 35(14):2574-8. PubMed ID: 992108 [Abstract] [Full Text] [Related]
16. Effects of inorganic phosphate on ion exchange, energy state, and contraction in mammalian heart. Ponce-Hornos JE, Langer GA. Am J Physiol; 1982 Jan 09; 242(1):H79-88. PubMed ID: 7058916 [Abstract] [Full Text] [Related]
17. H+-dependent sulfate secretion in the marine teleost renal tubule. Renfro JL, Pritchard JB. Am J Physiol; 1982 Aug 09; 243(2):F150-9. PubMed ID: 7114214 [Abstract] [Full Text] [Related]
18. Calcium movements across the membrane of human red cells. Schatzmann HJ, Vincenzi FF. J Physiol; 1969 Apr 09; 201(2):369-95. PubMed ID: 4238381 [Abstract] [Full Text] [Related]
19. Ionic requirements of peritubular taurine transport in Fundulus kidney. Wolff NA, Perlman DF, Goldstein L. Am J Physiol; 1986 Jun 09; 250(6 Pt 2):R984-90. PubMed ID: 3717388 [Abstract] [Full Text] [Related]
20. Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons. Blaustein MP, Santiago EM. Biophys J; 1977 Oct 09; 20(1):79-111. PubMed ID: 901903 [Abstract] [Full Text] [Related] Page: [Next] [New Search]