These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Behavior of enzyme activity in immobilized proteases. Kumakura M, Kaetsu I. Int J Biochem; 1984 Oct 15; 16(11):1159-61. PubMed ID: 6526133 [Abstract] [Full Text] [Related]
6. Design of protease inhibitors on the basis of substrate stereospecificity. Kim DH. Biopolymers; 1999 Oct 15; 51(1):3-8. PubMed ID: 10380348 [Abstract] [Full Text] [Related]
7. Overlapping binding sites for trypsin and papain on a Kunitz-type proteinase inhibitor from Prosopis juliflora. Franco OL, Grossi de Sá MF, Sales MP, Mello LV, Oliveira AS, Rigden DJ. Proteins; 2002 Nov 15; 49(3):335-41. PubMed ID: 12360523 [Abstract] [Full Text] [Related]
8. A theoretical study of the active sites of papain and S195C rat trypsin: implications for the low reactivity of mutant serine proteinases. Beveridge AJ. Protein Sci; 1996 Jul 15; 5(7):1355-65. PubMed ID: 8819168 [Abstract] [Full Text] [Related]
9. Reaction of lentil trypsin-chymotrypsin inhibitors with human and bovine proteinases. Weder JK, Kahleyss R. J Agric Food Chem; 2003 Dec 31; 51(27):8045-50. PubMed ID: 14690394 [Abstract] [Full Text] [Related]
10. Introduction of non-natural amino acid residues into the substrate-specific P1 position of trypsin inhibitor SFTI-1 yields potent chymotrypsin and cathepsin G inhibitors. Łegowska A, Debowski D, Lesner A, Wysocka M, Rolka K. Bioorg Med Chem; 2009 May 01; 17(9):3302-7. PubMed ID: 19362846 [Abstract] [Full Text] [Related]
11. Antimicrobial activity studies on a trypsin-chymotrypsin protease inhibitor obtained from potato. Kim JY, Park SC, Kim MH, Lim HT, Park Y, Hahm KS. Biochem Biophys Res Commun; 2005 May 13; 330(3):921-7. PubMed ID: 15809084 [Abstract] [Full Text] [Related]
12. Crystal structure of bovine duodenase, a serine protease, with dual trypsin and chymotrypsin-like specificities. Pletnev VZ, Zamolodchikova TS, Pangborn WA, Duax WL. Proteins; 2000 Oct 01; 41(1):8-16. PubMed ID: 10944388 [Abstract] [Full Text] [Related]
13. Studies on trypsin inhibitors of Streptomyces griseus Cal. Mukherjee M, Thangamani A. Indian J Biochem Biophys; 1981 Dec 01; 18(6):437-9. PubMed ID: 6800933 [No Abstract] [Full Text] [Related]
14. Influence of Anisakis simplex stage III larvae upon the activity of proteases under in vitro conditions. Dziekońska-Rynko J, Rokicki J, Jabłonowski Z. Wiad Parazytol; 2002 Dec 01; 48(2):217-23. PubMed ID: 16888944 [Abstract] [Full Text] [Related]
15. [Comparison of the effects of proteinase inhibitors antilysin, contrycal and trasylol on trypsin and chymotrypsin activity in man]. Malis F, Fric P, Slezák Z. Cesk Gastroenterol Vyz; 1972 Jan 01; 26(1):12-7. PubMed ID: 4536746 [No Abstract] [Full Text] [Related]
16. Protease activity in gut of Daphnia magna: evidence for trypsin and chymotrypsin enzymes. von Elert E, Agrawal MK, Gebauer C, Jaensch H, Bauer U, Zitt A. Comp Biochem Physiol B Biochem Mol Biol; 2004 Mar 01; 137(3):287-96. PubMed ID: 15050516 [Abstract] [Full Text] [Related]
17. Evaluation of resins for on-bead screening: a study of papain and chymotrypsin specificity using PEGA-bound combinatorial peptide libraries. Leon S, Quarrell R, Lowe G. Bioorg Med Chem Lett; 1998 Nov 03; 8(21):2997-3002. PubMed ID: 9873663 [Abstract] [Full Text] [Related]
18. Sulfated lipids as inhibitors of pancreatic trypsin and chymotrypsin in epithelium of the mammalian digestive tract. Iwamori M, Iwamori Y, Ito N. Biochem Biophys Res Commun; 1997 Aug 18; 237(2):262-5. PubMed ID: 9268697 [Abstract] [Full Text] [Related]