These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 7107593

  • 21. Evidence for an internal electrochemical proton gradient in Methanobacterium thermoautotrophicum.
    Sauer FD, Erfle JD, Mahadevan S.
    J Biol Chem; 1981 Oct 10; 256(19):9843-8. PubMed ID: 7275982
    [No Abstract] [Full Text] [Related]

  • 22. Proton circulation in Vibrio costicola.
    Hamaide F, Kushner DJ, Sprott GD.
    J Bacteriol; 1985 Feb 10; 161(2):681-6. PubMed ID: 2981820
    [Abstract] [Full Text] [Related]

  • 23. Roles of Na+ and K+ in alpha-aminoisobutyric acid transport by the marine bacterium Vibrio alginolyticus.
    Tokuda H, Sugasawa M, Unemoto T.
    J Biol Chem; 1982 Jan 25; 257(2):788-94. PubMed ID: 7054182
    [Abstract] [Full Text] [Related]

  • 24. cAMP-mediated catabolite repression and electrochemical potential-dependent production of an extracellular amylase in Vibrio alginolyticus.
    Kim UO, Hahm KS, Park YH, Kim YJ.
    Biosci Biotechnol Biochem; 1999 Feb 25; 63(2):288-92. PubMed ID: 10192907
    [Abstract] [Full Text] [Related]

  • 25. The effect of F0 inhibitors on the Vibrio alginolyticus membrane ATPase.
    Capozza G, Dmitriev OYu, Krasnoselskaya IA, Papa S, Skulachev VP.
    FEBS Lett; 1991 Mar 25; 280(2):274-6. PubMed ID: 1826482
    [Abstract] [Full Text] [Related]

  • 26. Respiration-driven Na+ pump and Na+ circulation in Vibrio parahaemolyticus.
    Tsuchiya T, Shinoda S.
    J Bacteriol; 1985 May 25; 162(2):794-8. PubMed ID: 2985548
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Respiratory Na+ pump and Na+-dependent energetics in Vibrio alginolyticus.
    Tokuda H.
    J Bioenerg Biomembr; 1989 Dec 25; 21(6):693-704. PubMed ID: 2687261
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Extrusion of sodium ions energized by respiration and glycolysis in Escherichia coli.
    Tsuchiya T, Takeda K.
    J Biochem; 1979 Jul 25; 86(1):225-30. PubMed ID: 39066
    [Abstract] [Full Text] [Related]

  • 31. [Electrochemical potential difference for H+-ions as a regulator of redox profile of membrane during ATP-dependent ion transport in E. coli].
    Bagramian KA, Martirosov SM.
    Biofizika; 1990 Jul 25; 35(4):624-7. PubMed ID: 2245226
    [Abstract] [Full Text] [Related]

  • 32. Molecular biology and energetics of membrane transport.
    Kaback HR.
    J Cell Physiol; 1976 Dec 25; 89(4):575-93. PubMed ID: 13080
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Energy requirements of the developing mammalian blastocyst for active ion transport.
    Benos DJ, Balaban RS.
    Biol Reprod; 1980 Dec 25; 23(5):941-7. PubMed ID: 7470531
    [No Abstract] [Full Text] [Related]

  • 39. Active transport in the photosynthetic bacterium Chromatium vinosum.
    Knaff DB.
    Arch Biochem Biophys; 1978 Aug 25; 189(2):225-30. PubMed ID: 30400
    [No Abstract] [Full Text] [Related]

  • 40. The proton pump is a molecular engine of motile bacteria.
    Glagolev AN, Skulachev VP.
    Nature; 1978 Mar 16; 272(5650):280-2. PubMed ID: 24186
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.