These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
135 related items for PubMed ID: 7107639
41. Ligand and halide binding properties of chloroperoxidase: peroxidase-type active site heme environment with cytochrome P-450 type endogenous axial ligand and spectroscopic properties. Sono M, Dawson JH, Hall K, Hager LP. Biochemistry; 1986 Jan 28; 25(2):347-56. PubMed ID: 3955002 [Abstract] [Full Text] [Related]
42. Synthetic analogs of the active site of cytochrome P-450cam characterization of thiolpeptide fragment-hemin complexes by optical and ESR spectrometries. Sakurai H, Uchikubo H, Yoshimura T, Maeda M, Kawasaki K. Biochem Biophys Res Commun; 1985 Aug 15; 130(3):1254-60. PubMed ID: 2992506 [Abstract] [Full Text] [Related]
43. Mössbauer and electron paramagnetic resonance studies of the cytochrome bf complex. Schünemann V, Trautwein AX, Illerhaus J, Haehnel W. Biochemistry; 1999 Jul 13; 38(28):8981-91. PubMed ID: 10413471 [Abstract] [Full Text] [Related]
44. Biophysical and structural analysis of a novel heme B iron ligation in the flavocytochrome cellobiose dehydrogenase. Rotsaert FA, Hallberg BM, de Vries S, Moenne-Loccoz P, Divne C, Renganathan V, Gold MH. J Biol Chem; 2003 Aug 29; 278(35):33224-31. PubMed ID: 12796496 [Abstract] [Full Text] [Related]
45. Electronic structure of heme-nitrosyls and its significance for nitric oxide reactivity, sensing, transport, and toxicity in biological systems. Goodrich LE, Paulat F, Praneeth VK, Lehnert N. Inorg Chem; 2010 Jul 19; 49(14):6293-316. PubMed ID: 20666388 [Abstract] [Full Text] [Related]
47. Ab initio calculations on iron-porphyrin model systems for intermediates in the oxidative cycle of cytochrome P450s. de Groot MJ, Havenith RW, Vinkers HM, Zwaans R, Vermeulen NP, van Lenthe JH. J Comput Aided Mol Des; 1998 Mar 19; 12(2):183-93. PubMed ID: 9690176 [Abstract] [Full Text] [Related]
49. Density functional theory applied to a difference in pathways taken by the enzymes cytochrome P450 and superoxide reductase: spin States of ferric hydroperoxo intermediates and hydrogen bonds from water. Surawatanawong P, Tye JW, Hall MB. Inorg Chem; 2010 Jan 04; 49(1):188-98. PubMed ID: 19968237 [Abstract] [Full Text] [Related]
50. Rational tuning of the thiolate donor in model complexes of superoxide reductase: direct evidence for a trans influence in Fe(III)-OOR complexes. Namuswe F, Kasper GD, Sarjeant AA, Hayashi T, Krest CM, Green MT, Moënne-Loccoz P, Goldberg DP. J Am Chem Soc; 2008 Oct 29; 130(43):14189-200. PubMed ID: 18837497 [Abstract] [Full Text] [Related]
51. Novel heme ligation in a c-type cytochrome involved in thiosulfate oxidation: EPR and MCD of SoxAX from Rhodovulum sulfidophilum. Cheesman MR, Little PJ, Berks BC. Biochemistry; 2001 Sep 04; 40(35):10562-9. PubMed ID: 11523998 [Abstract] [Full Text] [Related]
52. Accessibility and selective stabilization of the principal spin states of iron by pyridyl versus phenolic ketimines: modulation of the 6A1 ↔ 2T2 ground-state transformation of the [FeN4O2]+ chromophore. Shongwe MS, Al-Zaabi UA, Al-Mjeni F, Eribal CS, Sinn E, Al-Omari IA, Hamdeh HH, Matoga D, Adams H, Morris MJ, Rheingold AL, Bill E, Sellmyer DJ. Inorg Chem; 2012 Aug 06; 51(15):8241-53. PubMed ID: 22808945 [Abstract] [Full Text] [Related]
53. Model Complexes Elucidate the Role of the Proximal Hydrogen-Bonding Network in Cytochrome P450s. Hunt AP, Samanta S, Dent MR, Milbauer MW, Burstyn JN, Lehnert N. Inorg Chem; 2020 Jun 15; 59(12):8034-8043. PubMed ID: 32452669 [Abstract] [Full Text] [Related]
54. Second sphere control of spin state: Differential tuning of axial ligand bonds in ferric porphyrin complexes by hydrogen bonding. Mittra K, Sengupta K, Singha A, Bandyopadhyay S, Chatterjee S, Rana A, Samanta S, Dey A. J Inorg Biochem; 2016 Feb 15; 155():82-91. PubMed ID: 26638009 [Abstract] [Full Text] [Related]
55. Structures of the siroheme- and Fe4S4-containing active center of sulfite reductase in different states of oxidation: heme activation via reduction-gated exogenous ligand exchange. Crane BR, Siegel LM, Getzoff ED. Biochemistry; 1997 Oct 07; 36(40):12101-19. PubMed ID: 9315848 [Abstract] [Full Text] [Related]
56. Spectroscopy of non-heme iron thiolate complexes: insight into the electronic structure of the low-spin active site of nitrile hydratase. Kennepohl P, Neese F, Schweitzer D, Jackson HL, Kovacs JA, Solomon EI. Inorg Chem; 2005 Mar 21; 44(6):1826-36. PubMed ID: 15762709 [Abstract] [Full Text] [Related]
57. Mono- and bis-phosphine-ligated H93G myoglobin: spectral models for ferrous-phosphine and ferrous-CO cytochrome P450. Sun S, Sono M, Dawson JH. J Inorg Biochem; 2013 Oct 21; 127():238-45. PubMed ID: 23639797 [Abstract] [Full Text] [Related]
58. Electronic ground states of iron porphyrin and of the first species in the catalytic reaction cycle of cytochrome P450s. Groenhof AR, Swart M, Ehlers AW, Lammertsma K. J Phys Chem A; 2005 Apr 21; 109(15):3411-7. PubMed ID: 16833677 [Abstract] [Full Text] [Related]
59. New members of a class of iron-thiolate-nitrosyl compounds: trinuclear iron-thiolate-nitrosyl complexes containing Fe(3)S(6) core. Hsu IJ, Hsieh CH, Ke SC, Chiang KA, Lee JM, Chen JM, Jang LY, Lee GH, Wang Y, Liaw WF. J Am Chem Soc; 2007 Feb 07; 129(5):1151-9. PubMed ID: 17263396 [Abstract] [Full Text] [Related]
60. The heme iron coordination of unfolded ferric and ferrous cytochrome c in neutral and acidic urea solutions. Spectroscopic and electrochemical studies. Fedurco M, Augustynski J, Indiani C, Smulevich G, Antalík M, Bánó M, Sedlák E, Glascock MC, Dawson JH. Biochim Biophys Acta; 2004 Dec 01; 1703(1):31-41. PubMed ID: 15588700 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]