These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


311 related items for PubMed ID: 7119896

  • 1. Comparative utilization of the alpha-keto and D- and L-alpha-hydroxy analogs of leucine, isoleucine and valine by chicks and rats.
    Boebel KP, Baker DH.
    J Nutr; 1982 Oct; 112(10):1929-39. PubMed ID: 7119896
    [Abstract] [Full Text] [Related]

  • 2. Utilization of the L- and DL-isomers of alpha-keto-beta-methylvaleric acid by rats and comparative efficacy of the keto analogs of branched-chain amino acids provided as ornithine, lysine and histidine salts.
    Funk MA, Lowry KR, Baker DH.
    J Nutr; 1987 Sep; 117(9):1550-5. PubMed ID: 3116181
    [Abstract] [Full Text] [Related]

  • 3. Utilization of isomers and analogs of amino acids and other sulfur-containing compounds.
    Baker DH.
    Prog Food Nutr Sci; 1986 Sep; 10(1-2):133-78. PubMed ID: 3538184
    [Abstract] [Full Text] [Related]

  • 4. Effects on nitrogen balance and metabolism of branched-chain amino acids by growing pigs of supplementing isoleucine and valine to diets with adequate or excess concentrations of dietary leucine.
    Kwon WB, Soto JA, Stein HH.
    J Anim Sci; 2020 Nov 01; 98(11):. PubMed ID: 33095867
    [Abstract] [Full Text] [Related]

  • 5. Branched-chain amino acid interactions in skeletal muscle: isoleucine and L-alloisoleucine.
    Downey RS, Karl IE, Bier DM.
    JPEN J Parenter Enteral Nutr; 1986 Nov 01; 10(5):456-62. PubMed ID: 3093701
    [Abstract] [Full Text] [Related]

  • 6. Metabolic flux analysis of branched-chain amino and keto acids (BCAA, BCKA) and β-hydroxy β-methylbutyric acid across multiple organs in the pig.
    Ten Have GAM, Jansen L, Schooneman MG, Engelen MPKJ, Deutz NEP.
    Am J Physiol Endocrinol Metab; 2021 Mar 01; 320(3):E629-E640. PubMed ID: 33522397
    [Abstract] [Full Text] [Related]

  • 7. Relationship between intake and rate of oxidation of leucine and alpha-ketoisocaproate in vivo in the rat.
    Harper AE, Benjamin E.
    J Nutr; 1984 Feb 01; 114(2):431-40. PubMed ID: 6694002
    [Abstract] [Full Text] [Related]

  • 8. Optimisation of broiler chicken responses from 0 to 7 d of age to dietary leucine, isoleucine and valine using Taguchi and mathematical methods.
    Sedghi M, Golian A, Kolahan F, Afsar A.
    Br Poult Sci; 2015 Feb 01; 56(6):696-707. PubMed ID: 26447759
    [Abstract] [Full Text] [Related]

  • 9. Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs.
    Zheng L, Zuo F, Zhao S, He P, Wei H, Xiang Q, Pang J, Peng J.
    Br J Nutr; 2017 Apr 01; 117(7):911-922. PubMed ID: 28446262
    [Abstract] [Full Text] [Related]

  • 10. Blood and tissue branched-chain amino and alpha-keto acid concentrations: effect of diet, starvation, and disease.
    Hutson SM, Harper AE.
    Am J Clin Nutr; 1981 Feb 01; 34(2):173-83. PubMed ID: 7211722
    [Abstract] [Full Text] [Related]

  • 11. Effects of branched-chain amino acid antagonism in the rat on tissue amino acid and keto acid concentrations.
    Shinnick FL, Harper AE.
    J Nutr; 1977 May 01; 107(5):887-95. PubMed ID: 870654
    [Abstract] [Full Text] [Related]

  • 12. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus.
    Beck HC, Hansen AM, Lauritsen FR.
    J Appl Microbiol; 2004 May 01; 96(5):1185-93. PubMed ID: 15078537
    [Abstract] [Full Text] [Related]

  • 13. The effects of branched-chain amino acid interactions on growth performance, blood metabolites, enzyme kinetics and transcriptomics in weaned pigs.
    Wiltafsky MK, Pfaffl MW, Roth FX.
    Br J Nutr; 2010 Apr 01; 103(7):964-76. PubMed ID: 20196890
    [Abstract] [Full Text] [Related]

  • 14. Understanding the interactive effects of dietary leucine with isoleucine and valine in the modern commercial broiler.
    Kriseldi R, Silva M, Lee J, Adhikari R, Williams C, Corzo A.
    Poult Sci; 2022 Dec 01; 101(12):102140. PubMed ID: 36191517
    [Abstract] [Full Text] [Related]

  • 15. Alpha-keto and alpha-hydroxy branched-chain acid interrelationships in normal humans.
    Hoffer LJ, Taveroff A, Robitaille L, Mamer OA, Reimer ML.
    J Nutr; 1993 Sep 01; 123(9):1513-21. PubMed ID: 8360777
    [Abstract] [Full Text] [Related]

  • 16. Utilization of alpha-keto and alpha-hydroxy analogues of valine by the growing rat.
    Chawla RK, Rudman D.
    J Clin Invest; 1974 Aug 01; 54(2):271-7. PubMed ID: 4367888
    [Abstract] [Full Text] [Related]

  • 17. Essential branched-chain amino acids and alpha-ketoanalogues in haemodialysis patients.
    Riedel E, Hampl H, Nündel M, Farshidfar G.
    Nephrol Dial Transplant; 1992 Aug 01; 7(2):117-20. PubMed ID: 1314969
    [Abstract] [Full Text] [Related]

  • 18. Direct Analysis of Leucine and Its Metabolites β-Hydroxy-β-methylbutyric Acid, α-Ketoisocaproic Acid, and α-Hydroxyisocaproic Acid in Human Breast Milk by Liquid Chromatography-Mass Spectrometry.
    Ehling S, Reddy TM.
    J Agric Food Chem; 2015 Sep 02; 63(34):7567-73. PubMed ID: 26271627
    [Abstract] [Full Text] [Related]

  • 19. Regulation of valine and alpha-ketoisocaproate metabolism in rat kidney mitochondria.
    Miller RH, Harper AE.
    Am J Physiol; 1988 Oct 02; 255(4 Pt 1):E475-81. PubMed ID: 3177634
    [Abstract] [Full Text] [Related]

  • 20. Metabolism of branched-chain amino acids in starved rats: the role of hepatic tissue.
    Holecek M, Sprongl L, Tilser I.
    Physiol Res; 2001 Oct 02; 50(1):25-33. PubMed ID: 11300224
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.