These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


121 related items for PubMed ID: 712129

  • 1. [Effect of hypothermic circulatory arrest on cerebral blood flow and metabolism during cardiopulmonary bypass (author's transl)].
    Kawakami S, Aokage K, Nakayama Y, Mondori E, Kasai T, Senoo Y, Teramoto S, Kosugi I.
    Nihon Kyobu Geka Gakkai Zasshi; 1978 Jun; 26(6):663-71. PubMed ID: 712129
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. The effects of deep hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral blood flow in infants and children.
    Greeley WJ, Ungerleider RM, Smith LR, Reves JG.
    J Thorac Cardiovasc Surg; 1989 May; 97(5):737-45. PubMed ID: 2709864
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Brain tissue pH, oxygen tension, and carbon dioxide tension in profoundly hypothermic cardiopulmonary bypass. Pulsatile assistance for circulatory arrest, low-flow perfusion, and moderate-flow perfusion.
    Watanabe T, Miura M, Orita H, Kobayasi M, Washio M.
    J Thorac Cardiovasc Surg; 1990 Aug; 100(2):274-80. PubMed ID: 2117099
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The influence of pH strategy on cerebral and collateral circulation during hypothermic cardiopulmonary bypass in cyanotic patients with heart disease: results of a randomized trial and real-time monitoring.
    Sakamoto T, Kurosawa H, Shin'oka T, Aoki M, Isomatsu Y.
    J Thorac Cardiovasc Surg; 2004 Jan; 127(1):12-9. PubMed ID: 14752407
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Brain tissue pH, oxygen tension, and carbon dioxide tension in profoundly hypothermic cardiopulmonary bypass. Comparative study of circulatory arrest, nonpulsatile low-flow perfusion, and pulsatile low-flow perfusion.
    Watanabe T, Orita H, Kobayashi M, Washio M.
    J Thorac Cardiovasc Surg; 1989 Mar; 97(3):396-401. PubMed ID: 2493109
    [Abstract] [Full Text] [Related]

  • 11. Recovery of cerebral metabolism and mitochondrial oxidation state is delayed after hypothermic circulatory arrest.
    Greeley WJ, Bracey VA, Ungerleider RM, Greibel JA, Kern FH, Boyd JL, Reves JG, Piantadosi CA.
    Circulation; 1991 Nov; 84(5 Suppl):III400-6. PubMed ID: 1657453
    [Abstract] [Full Text] [Related]

  • 12. Cerebral oxygen monitoring during neonatal cardiopulmonary bypass and deep hypothermic circulatory arrest.
    Abdul-Khaliq H, Troitzsch D.
    Thorac Cardiovasc Surg; 2003 Feb; 51(1):52-3. PubMed ID: 12587092
    [No Abstract] [Full Text] [Related]

  • 13. Cerebral physiology in paediatric cardiopulmonary bypass.
    Pua HL, Bissonnette B.
    Can J Anaesth; 1998 Oct; 45(10):960-78. PubMed ID: 9836033
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Antegrade selective cerebral perfusion combined with deep hypothermic circulatory arrest on cerebral circulation: comparison between pulsatile and nonpulsatile blood flows.
    Soeda M.
    Ann Thorac Cardiovasc Surg; 2007 Apr; 13(2):93-101. PubMed ID: 17505416
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.