These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 7123859

  • 1. Changes in the human visually evoked cortical potential in response to chromatic modulation of a sinusoidal grating.
    Petry HM, Donovan WJ, Moore RK, Dixon WB, Riggs LA.
    Vision Res; 1982; 22(7):745-55. PubMed ID: 7123859
    [Abstract] [Full Text] [Related]

  • 2. Visual evoked cortical potential elicited by pseudoisochromatic stimulus.
    Salomão RC, Martins ICVDS, Risuenho BBO, Guimarães DL, Silveira LCL, Ventura DF, Souza GS.
    Doc Ophthalmol; 2019 Feb; 138(1):43-54. PubMed ID: 30617670
    [Abstract] [Full Text] [Related]

  • 3. The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings.
    Mullen KT.
    J Physiol; 1985 Feb; 359():381-400. PubMed ID: 3999044
    [Abstract] [Full Text] [Related]

  • 4. Normal and dichromatic color discrimination measured with transient visual evoked potential.
    Gomes BD, Souza GS, Rodrigues AR, Saito CA, Silveira LC, da Silva Filho M.
    Vis Neurosci; 2006 Feb; 23(3-4):617-27. PubMed ID: 16962005
    [Abstract] [Full Text] [Related]

  • 5. Color discrimination along the cardinal chromatic axes with VECPs as an index of function of the parvocellular pathway. Correspondence of intersubject and axis variations to psychophysics.
    Macaluso C, Lamedica A, Baratta G, Cordella M.
    Electroencephalogr Clin Neurophysiol; 1996 Jan; 100(1):12-7. PubMed ID: 8964258
    [Abstract] [Full Text] [Related]

  • 6. Orientation and spatial-frequency discrimination for luminance and chromatic gratings.
    Webster MA, De Valois KK, Switkes E.
    J Opt Soc Am A; 1990 Jun; 7(6):1034-49. PubMed ID: 2362227
    [Abstract] [Full Text] [Related]

  • 7. The development of chromatic and achromatic contrast sensitivity in infancy as tested with the sweep VEP.
    Kelly JP, Borchert K, Teller DY.
    Vision Res; 1997 Aug; 37(15):2057-72. PubMed ID: 9327054
    [Abstract] [Full Text] [Related]

  • 8. Spatial influences on colour opponent contributions to pattern detection.
    Mullen KT.
    Vision Res; 1987 Aug; 27(5):829-39. PubMed ID: 3660643
    [Abstract] [Full Text] [Related]

  • 9. Cortical contrast gain control in human spatial vision.
    Bobak P, Bodis-Wollner I, Marx MS.
    J Physiol; 1988 Nov; 405():421-37. PubMed ID: 3255797
    [Abstract] [Full Text] [Related]

  • 10. Visual evoked cortical potentials and psychophysical determination of color contrast thresholds along different chromatic axes.
    Macaluso C, Baratta G, Lamedica A, Luani D, Cordella M.
    Doc Ophthalmol; 1995 Nov; 90(2):201-9. PubMed ID: 7497891
    [Abstract] [Full Text] [Related]

  • 11. Contrast sensitivity and visual acuity of the pigmented rat determined electrophysiologically.
    Silveira LC, Heywood CA, Cowey A.
    Vision Res; 1987 Nov; 27(10):1719-31. PubMed ID: 3445463
    [Abstract] [Full Text] [Related]

  • 12. Temporal properties of brightness and color induction.
    De Valois RL, Webster MA, De Valois KK, Lingelbach B.
    Vision Res; 1986 Nov; 26(6):887-97. PubMed ID: 3750872
    [Abstract] [Full Text] [Related]

  • 13. Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: contribution of different visual pathways.
    Souza GS, Gomes BD, Lacerda EM, Saito CA, da Silva Filho M, Silveira LC.
    Vis Neurosci; 2008 Nov; 25(3):317-25. PubMed ID: 18321403
    [Abstract] [Full Text] [Related]

  • 14. Binocularity in the little owl, Athene noctua. II. Properties of visually evoked potentials from the Wulst in response to monocular and binocular stimulation with sine wave gratings.
    Porciatti V, Fontanesi G, Raffaelli A, Bagnoli P.
    Brain Behav Evol; 1990 Nov; 35(1):40-8. PubMed ID: 2340414
    [Abstract] [Full Text] [Related]

  • 15. Magnetic and electrical brain responses to chromatic contrast in human.
    Regan D, He P.
    Vision Res; 1996 Jan; 36(1):1-18. PubMed ID: 8746238
    [Abstract] [Full Text] [Related]

  • 16. Chromatic spatial contrast sensitivity estimated by visual evoked cortical potential and psychophysics.
    Barboni MT, Gomes BD, Souza GS, Rodrigues AR, Ventura DF, Silveira LC.
    Braz J Med Biol Res; 2013 Feb; 46(2):154-63. PubMed ID: 23369980
    [Abstract] [Full Text] [Related]

  • 17. Estimating chromatic contrast thresholds from the transient visual evoked potential.
    Boon MY, Suttle CM, Henry B.
    Vision Res; 2005 Aug; 45(18):2367-83. PubMed ID: 15979463
    [Abstract] [Full Text] [Related]

  • 18. Visual evoked potentials in three-dimensional color space: correlates of spatio-chromatic processing.
    Rabin J, Switkes E, Crognale M, Schneck ME, Adams AJ.
    Vision Res; 1994 Oct; 34(20):2657-71. PubMed ID: 7975303
    [Abstract] [Full Text] [Related]

  • 19. Modelling spatial contrast sensitivity functions for chromatic and luminance-modulated gratings.
    Rovamo JM, Kankaanpää MI, Kukkonen H.
    Vision Res; 1999 Jul; 39(14):2387-98. PubMed ID: 10367059
    [Abstract] [Full Text] [Related]

  • 20. Spatial frequency selectivity of the human visual cortex estimated with pseudo-random visual evoked cortical potential (VECP).
    Martins ICVS, Brasil A, Miquilini L, Goulart PRK, Herculano AM, Silveira LCL, Souza GS.
    Vision Res; 2019 Dec; 165():13-21. PubMed ID: 31610286
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.