These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
187 related items for PubMed ID: 7127410
1. Ommatidial structure in relation to turnover of photoreceptor membrane in the locust. Williams DS. Cell Tissue Res; 1982; 225(3):595-617. PubMed ID: 7127410 [Abstract] [Full Text] [Related]
2. Rhabdom size and photoreceptor membrane turnover in a muscoid fly. Williams DS. Cell Tissue Res; 1982; 226(3):629-39. PubMed ID: 7139695 [Abstract] [Full Text] [Related]
3. Daily changes of structure, function and rhodopsin content in the compound eye of the crab Hemigrapsus sanguineus. Arikawa K, Kawamata K, Suzuki T, Eguchi E. J Comp Physiol A; 1987 Aug; 161(2):161-74. PubMed ID: 3625570 [Abstract] [Full Text] [Related]
4. Transient membrane shedding in Limulus photoreceptors: control mechanisms under natural lighting. Chamberlain SC, Barlow RB. J Neurosci; 1984 Nov; 4(11):2792-810. PubMed ID: 6502204 [Abstract] [Full Text] [Related]
5. Phagocytosis of rhabdomeral membrane by crab photoreceptors (Leptograpsus variegatus). Stowe S. Cell Tissue Res; 1983 Nov; 234(2):463-7. PubMed ID: 6640629 [Abstract] [Full Text] [Related]
6. The retina of the phalangid, Opilio ravennae, with particular reference to arhabdomeric cells. Schliwa M. Cell Tissue Res; 1979 Nov; 204(3):473-95. PubMed ID: 527030 [Abstract] [Full Text] [Related]
7. Photoreceptor membrane shedding and assembly can be initiated locally within an insect retina. Williams DS. Science; 1982 Nov 26; 218(4575):898-900. PubMed ID: 7134980 [Abstract] [Full Text] [Related]
8. Diurnal and circadian rhythm in compound eye of cricket (Gryllus bimaculatus): changes in structure and photon capture efficiency. Sakura M, Takasuga K, Watanabe M, Eguchi E. Zoolog Sci; 2003 Jul 26; 20(7):833-40. PubMed ID: 12867711 [Abstract] [Full Text] [Related]
9. Specialized ommatidia for polarization vision in the compound eye of cockchafers, Melolontha melolontha (Coleoptera, Scarabaeidae). Labhart T, Meyer EP, Schenker L. Cell Tissue Res; 1992 Jun 26; 268(3):419-29. PubMed ID: 1628299 [Abstract] [Full Text] [Related]
10. Central regulation of photosensitive membrane turnover in the lateral eye of Limulus. I. Octopamine primes the retina for daily transient rhabdom shedding. Khadilkar RV, Mytinger JR, Thomason LE, Runyon SL, Washicosky KJ, Jinks RN. Vis Neurosci; 2002 Jun 26; 19(3):283-97. PubMed ID: 12392178 [Abstract] [Full Text] [Related]
11. Light-induced and circadian changes in the compound eye of the haematophagous bug Triatoma infestans (Hemiptera: Reduviidae). Reisenman CE, Insausti TC, Lazzari CR. J Exp Biol; 2002 Jan 26; 205(Pt 2):201-10. PubMed ID: 11821486 [Abstract] [Full Text] [Related]
12. Twisted rhabdomeres in the compound eye of a tipulid fly (Diptera). Williams DS. Cell Tissue Res; 1981 Jan 26; 217(3):625-32. PubMed ID: 7249053 [Abstract] [Full Text] [Related]
13. Diminution and enlargement of the mosquito rhabdom in light and darkness. White RH, Lord E. J Gen Physiol; 1975 May 26; 65(5):583-98. PubMed ID: 1176940 [Abstract] [Full Text] [Related]
14. Disruption of insect photoreceptor membrane by divalent ions: dissimilar sensitivity of light- and dark-adapted mosquito rhabdomeres. White RH, Michaud NA. Cell Tissue Res; 1981 May 26; 216(2):403-11. PubMed ID: 7226214 [Abstract] [Full Text] [Related]
15. Freeze-etch and histochemical evidence for cycling in crayfish photoreceptor membranes. Eguchi E, Waterman TH. Cell Tissue Res; 1976 Jul 06; 169(4):419-34. PubMed ID: 991193 [Abstract] [Full Text] [Related]
16. Light-/dark-induced changes in rhabdom structure in the retina of Octopus bimaculoides. Torres SC, Camacho JL, Matsumoto B, Kuramoto RT, Robles LJ. Cell Tissue Res; 1997 Oct 06; 290(1):167-74. PubMed ID: 9377636 [Abstract] [Full Text] [Related]
17. The visual system of the Australian 'Redeye' cicada (Psaltoda moerens). Ribi WA, Zeil J. Arthropod Struct Dev; 2015 Nov 06; 44(6 Pt A):574-86. PubMed ID: 26335848 [Abstract] [Full Text] [Related]
18. Rapid synthesis of photoreceptor membrane and assembly of new microvilli in a crab at dusk. Stowe S. Cell Tissue Res; 1980 Nov 06; 211(3):419-40. PubMed ID: 7417993 [Abstract] [Full Text] [Related]
19. The local deletion of a microvillar cytoskeleton from photoreceptors of tipulid flies during membrane turnover. Blest AD, Stowe S, Eddey W, Williams DS. Proc R Soc Lond B Biol Sci; 1982 Jul 22; 215(1201):469-79. PubMed ID: 6127716 [Abstract] [Full Text] [Related]
20. Light adaptation mechanisms in the eye of the fiddler crab Afruca tangeri. Brodrick EA, Roberts NW, Sumner-Rooney L, Schlepütz CM, How MJ. J Comp Neurol; 2021 Feb 22; 529(3):616-634. PubMed ID: 32592497 [Abstract] [Full Text] [Related] Page: [Next] [New Search]