These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
136 related items for PubMed ID: 7130184
1. A rabbit erythrocyte membrane protein associated with L-lactate transport. Jennings ML, Adams-Lackey M. J Biol Chem; 1982 Nov 10; 257(21):12866-71. PubMed ID: 7130184 [Abstract] [Full Text] [Related]
2. Membrane polypeptide in rabbit erythrocytes associated with the inhibition of L-lactate transport by a synthetic anhydride of lactic acid. Donovan JA, Jennings ML. Biochemistry; 1985 Jan 29; 24(3):561-4. PubMed ID: 2986679 [Abstract] [Full Text] [Related]
4. Protein-mediated chloride-phosphate and lactate-lactate exchange in cytoskeleton-free vesicles budded from rabbit erythrocytes. Donovan JA. Biochim Biophys Acta; 1985 Jun 11; 816(1):68-76. PubMed ID: 4005240 [Abstract] [Full Text] [Related]
5. Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter. Cranmer SL, Conant AR, Gutteridge WE, Halestrap AP. J Biol Chem; 1995 Jun 23; 270(25):15045-52. PubMed ID: 7797486 [Abstract] [Full Text] [Related]
8. Identification and partial purification of the erythrocyte L-lactate transporter. Poole RC, Halestrap AP. Biochem J; 1992 May 01; 283 ( Pt 3)(Pt 3):855-62. PubMed ID: 1590773 [Abstract] [Full Text] [Related]
9. Effects of inorganic and organic anions on the transport of phosphoenol-pyruvate across the erythrocyte membrane. Hamasaki N, Matsuyama H, Hirota-Chigita C, Nanri H. Tokai J Exp Clin Med; 1982 May 01; 7 Suppl():113-9. PubMed ID: 7186217 [Abstract] [Full Text] [Related]
11. Transmembrane effects of intracellular chloride on the inhibitory potency of extracellular H2DIDS. Evidence for two conformations of the transport site of the human erythrocyte anion exchange protein. Furuya W, Tarshis T, Law FY, Knauf PA. J Gen Physiol; 1984 May 01; 83(5):657-81. PubMed ID: 6736915 [Abstract] [Full Text] [Related]
13. Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles. Roth DA, Brooks GA. Arch Biochem Biophys; 1990 Jun 01; 279(2):386-94. PubMed ID: 2350185 [Abstract] [Full Text] [Related]
14. Clinical assay of the human erythrocyte lactate transporter. II. Analysis and display of normal human data. Fishbein WN, Davis JI, Foellmer JW, Casey MR. Biochem Med Metab Biol; 1988 Jun 01; 39(3):351-9. PubMed ID: 3395514 [Abstract] [Full Text] [Related]
16. Reconstitution of the L-lactate carrier from rat and rabbit erythrocyte plasma membranes. Poole RC, Halestrap AP. Biochem J; 1988 Sep 01; 254(2):385-90. PubMed ID: 3178766 [Abstract] [Full Text] [Related]
18. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Halestrap AP. Biochem J; 1976 May 15; 156(2):193-207. PubMed ID: 942406 [Abstract] [Full Text] [Related]
19. Evidence for a lactate transport system in the sarcolemmal membrane of the perfused rabbit heart: kinetics of unidirectional influx, carrier specificity and effects of glucagon. Mann GE, Zlokovic BV, Yudilevich DL. Biochim Biophys Acta; 1985 Oct 10; 819(2):241-8. PubMed ID: 4041458 [Abstract] [Full Text] [Related]
20. Enhancement of anion equilibrium exchange by dansylation of the red blood cell membrane. Legrum B, Fasold H, Passow H. Hoppe Seylers Z Physiol Chem; 1980 Oct 10; 361(10):1573-90. PubMed ID: 7450677 [Abstract] [Full Text] [Related] Page: [Next] [New Search]