These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
129 related items for PubMed ID: 7138497
1. Genetic control of amino acid transport in sheep erythrocytes. Young JD, Tucker EM, Kilgour L. Biochem Genet; 1982 Aug; 20(7-8):723-31. PubMed ID: 7138497 [Abstract] [Full Text] [Related]
2. Dibasic amino acid interactions with Na+-independent transport system asc in horse erythrocytes. Kinetic evidence of functional and structural homology with Na+-dependent system ASC. Fincham DA, Mason DK, Young JD. Biochim Biophys Acta; 1988 Jan 13; 937(1):184-94. PubMed ID: 3334844 [Abstract] [Full Text] [Related]
3. Substrate specificity of amino acid transport in sheep erythrocytes. Young JD, Ellory JC. Biochem J; 1977 Jan 15; 162(1):33-8. PubMed ID: 849280 [Abstract] [Full Text] [Related]
4. Amino acid transport in normal and glutathione-deficient sheep erythrocytes. Young JD, Ellory JC, Tucker EM. Biochem J; 1976 Jan 15; 154(1):43-8. PubMed ID: 1275912 [Abstract] [Full Text] [Related]
5. Heterogeneity of amino acid transport in horse erythrocytes: a detailed kinetic analysis of inherited transport variation. Fincham DA, Mason DK, Paterson JY, Young JD. J Physiol; 1987 Aug 15; 389():385-409. PubMed ID: 3681732 [Abstract] [Full Text] [Related]
6. Biochemical changes during reticulocyte maturation in culture. A comparison of genetically different sheep erythrocytes. Tucker EM, Young JD. Biochem J; 1980 Oct 15; 192(1):33-9. PubMed ID: 7305904 [Abstract] [Full Text] [Related]
7. Characterization of a novel variant of amino acid transport system asc in erythrocytes from Przewalski's horse (Equus przewalskii). Fincham DA, Ellory JC, Young JD. Can J Physiol Pharmacol; 1992 Aug 15; 70(8):1117-27. PubMed ID: 1473044 [Abstract] [Full Text] [Related]
9. Relationship between cell age, glutathione and cation concentrations in sheep erythrocytes with a normal and a defective transport system for amino acids. Fisher TJ, Tucker EM, Young JD. Biochim Biophys Acta; 1986 Oct 29; 884(1):211-4. PubMed ID: 3768413 [Abstract] [Full Text] [Related]
10. Characterization of normal, glutathione-deficient and arginase-deficient sheep erythrocytes by 1H-NMR spectroscopy. Rabenstein DL, Young JD, Wolowyk MW, Razi MT, Arnold AP, Tucker EM. Biochim Biophys Acta; 1985 Aug 30; 846(2):200-7. PubMed ID: 2862919 [Abstract] [Full Text] [Related]
11. Amino acid transport properties of erythrocytes from normal newborn lambs and lambs with an inherited defect in amino acid transport. Young JD, Tucker EM, Ellory JC. Biochim Biophys Acta; 1978 Aug 17; 511(3):513-6. PubMed ID: 687627 [Abstract] [Full Text] [Related]
12. Amino acid transport in human and in sheep erythrocytes. Young JD, Jones SE, Ellory JC. Proc R Soc Lond B Biol Sci; 1980 Sep 26; 209(1176):355-75. PubMed ID: 6109287 [Abstract] [Full Text] [Related]
14. Red-cell amino acid transport. Evidence for the presence of system ASC in mature human red blood cells. Young JD, Wolowyk MW, Jones SM, Ellory JC. Biochem J; 1983 Nov 15; 216(2):349-57. PubMed ID: 6661202 [Abstract] [Full Text] [Related]
16. Dietary protein reduction in sheep and goats: different effects on L-alanine and L-leucine transport across the brush-border membrane of jejunal enterocytes. Schröder B, Schöneberger M, Rodehutscord M, Pfeffer E, Breves G. J Comp Physiol B; 2003 Aug 15; 173(6):511-8. PubMed ID: 12811487 [Abstract] [Full Text] [Related]