These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. In vivo and in vitro adenosine stimulation of ethanol oxidation by hepatocytes, and the role of the malate-aspartate shuttle. Hernández-Muñoz R, Díaz-Muñoz M, Chagoya de Sánchez V. Biochim Biophys Acta; 1987 Sep 14; 930(2):254-63. PubMed ID: 2887212 [Abstract] [Full Text] [Related]
7. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes. Berry MN, Phillips JW, Gregory RB, Grivell AR, Wallace PG. Biochim Biophys Acta; 1992 Sep 09; 1136(3):223-30. PubMed ID: 1520699 [Abstract] [Full Text] [Related]
8. Role of the malate-aspartate shuttle in the metabolism of ethanol in vivo. Nordmann R, Petit MA, Nordmann J. Biochem Pharmacol; 1975 Jan 01; 24(1):139-43. PubMed ID: 1122254 [No Abstract] [Full Text] [Related]
10. The malate/aspartate shuttle and pyruvate kinase as targets involved in the stimulation of gluconeogenesis by phenylephrine. Leverve XM, Verhoeven AJ, Groen AK, Meijer AJ, Tager JM. Eur J Biochem; 1986 Mar 17; 155(3):551-6. PubMed ID: 3956499 [Abstract] [Full Text] [Related]
11. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems. Abbrescia DI, La Piana G, Lofrumento NE. Arch Biochem Biophys; 2012 Feb 15; 518(2):157-63. PubMed ID: 22239987 [Abstract] [Full Text] [Related]
12. Influence of the malate-aspartate shuttle on oxidative metabolism in synaptosomes. Cheeseman AJ, Clark JB. J Neurochem; 1988 May 15; 50(5):1559-65. PubMed ID: 3361310 [Abstract] [Full Text] [Related]
13. Glutamate and aspartate transport in rat brain mitochondria. Brand MD, Chappell JB. Biochem J; 1974 May 15; 140(2):205-10. PubMed ID: 4375961 [Abstract] [Full Text] [Related]
14. Hydrogen transfer into mitochondria in the metabolism of ethanol. I. Oxidation of extramitochondrial reduced nicotinamide-adenine dinucleotide by mitochondria. Hassinen I. Ann Med Exp Biol Fenn; 1967 May 15; 45(1):35-45. PubMed ID: 4294130 [No Abstract] [Full Text] [Related]
15. The photorespiratory hydrogen shuttle. Synthesis of phthalonic acid and its use in the characterization of the malate/aspartate shuttle in pea (Pisum sativum) leaf mitochondria. Dry IB, Dimitriadis E, Ward AD, Wiskich JT. Biochem J; 1987 Aug 01; 245(3):669-75. PubMed ID: 3663185 [Abstract] [Full Text] [Related]
16. The operation of the malate-aspartate shuttle in the reoxidation of glycolytic NADH in slices of fetal rat liver. Dani A, Bartoli GM, Galeotti T. Biochim Biophys Acta; 1977 Dec 23; 462(3):781-4. PubMed ID: 202312 [Abstract] [Full Text] [Related]
17. Control of reversible intracellular transfer of reducing potential. Kunz WS, Davis EJ. Arch Biochem Biophys; 1991 Jan 23; 284(1):40-6. PubMed ID: 1824912 [Abstract] [Full Text] [Related]
19. Absence of NADH channeling in coupled reaction of mitochondrial malate dehydrogenase and complex I in alamethicin-permeabilized rat liver mitochondria. Kotlyar AB, Maklashina E, Cecchini G. Biochem Biophys Res Commun; 2004 Jun 11; 318(4):987-91. PubMed ID: 15147970 [Abstract] [Full Text] [Related]
20. Ethanol oxidation in systems containing soluble and mitochondrial fractions of rat liver. Regulation by acetaldehyde. Dawson AG. Biochem Pharmacol; 1983 Jul 15; 32(14):2157-65. PubMed ID: 6347204 [Abstract] [Full Text] [Related] Page: [Next] [New Search]