These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
132 related items for PubMed ID: 7138913
1. Accumulation and disposal of tricarboxylic acid cycle intermediates during propionate oxidation in the isolated perfused rat heart. Peuhkurinen KJ. Biochim Biophys Acta; 1982 Oct 11; 721(2):124-34. PubMed ID: 7138913 [Abstract] [Full Text] [Related]
2. Effect of acetate and octanoate on tricarboxylic acid cycle metabolite disposal during propionate oxidation in the perfused rat heart. Sundqvist KE, Peuhkurinen KJ, Hiltunen JK, Hassinen IE. Biochim Biophys Acta; 1984 Oct 16; 801(3):429-36. PubMed ID: 6487652 [Abstract] [Full Text] [Related]
3. Role of pyruvate carboxylation in the energy-linked regulation of pool sizes of tricarboxylic acid-cycle intermediates in the myocardium. Peuhkurinen KJ, Nuutinen EM, Pietiläinen EP, Hiltunen JK, Hassinen IE. Biochem J; 1982 Dec 15; 208(3):577-81. PubMed ID: 6131668 [Abstract] [Full Text] [Related]
4. Orientation-conserved transfer of symmetric Krebs cycle intermediates in mammalian tissue. Sherry AD, Sumegi B, Miller B, Cottam GL, Gavva S, Jones JG, Malloy CR. Biochemistry; 1994 May 24; 33(20):6268-75. PubMed ID: 7910760 [Abstract] [Full Text] [Related]
5. Pyruvate carboxylation as an anaplerotic mechanism in the isolated perfused rat heart. Peuhkurinen KJ, Hassinen IE. Biochem J; 1982 Jan 15; 202(1):67-76. PubMed ID: 7082318 [Abstract] [Full Text] [Related]
11. Role of NADP+ (corrected)-linked malic enzymes as regulators of the pool size of tricarboxylic acid-cycle intermediates in the perfused rat heart. Sundqvist KE, Heikkilä J, Hassinen IE, Hiltunen JK. Biochem J; 1987 May 01; 243(3):853-7. PubMed ID: 3663104 [Abstract] [Full Text] [Related]
12. Propionate-induced changes in cardiac metabolism, notably CoA trapping, are not altered by l-carnitine. Wang Y, Christopher BA, Wilson KA, Muoio D, McGarrah RW, Brunengraber H, Zhang GF. Am J Physiol Endocrinol Metab; 2018 Oct 01; 315(4):E622-E633. PubMed ID: 30016154 [Abstract] [Full Text] [Related]
13. Mass isotopomer study of anaplerosis from propionate in the perfused rat heart. Kasumov T, Cendrowski AV, David F, Jobbins KA, Anderson VE, Brunengraber H. Arch Biochem Biophys; 2007 Jul 01; 463(1):110-7. PubMed ID: 17418801 [Abstract] [Full Text] [Related]
15. Subcellular metabolite transport and carbon isotope kinetics in the intramyocardial glutamate pool. Yu X, White LT, Alpert NM, Lewandowski ED. Biochemistry; 1996 May 28; 35(21):6963-8. PubMed ID: 8639648 [Abstract] [Full Text] [Related]
16. Anaerobic rat heart. Effects of glucose and tricarboxylic acid-cycle metabolites on metabolism and physiological performance. Penney DG, Cascarano J. Biochem J; 1970 Jun 28; 118(2):221-7. PubMed ID: 5528183 [Abstract] [Full Text] [Related]
17. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart. Randle PJ, England PJ, Denton RM. Biochem J; 1970 May 28; 117(4):677-95. PubMed ID: 5449122 [Abstract] [Full Text] [Related]
18. Metabolic effects of propionate, hexanoate and propionylcarnitine in normoxia, ischaemia and reperfusion. Does an anaplerotic substrate protect the ischaemic myocardium? Sundqvist KE, Vuorinen KH, Peuhkurinen KJ, Hassinen IE. Eur Heart J; 1994 Apr 28; 15(4):561-70. PubMed ID: 8070485 [Abstract] [Full Text] [Related]
19. Metabolism of propionate by sheep liver. Pathway of propionate metabolism in aged homogenate and mitochondria. Smith RM, Osborne-White WS, Russell GR. Biochem J; 1967 Aug 28; 104(2):441-9. PubMed ID: 6048786 [Abstract] [Full Text] [Related]