These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


289 related items for PubMed ID: 7139716

  • 1. Transcription of cloned Xenopus laevis ribosomal DNA microinjected into Xenopus oocytes, and the identification of an RNA polymerase I promoter.
    Moss T.
    Cell; 1982 Oct; 30(3):835-42. PubMed ID: 7139716
    [Abstract] [Full Text] [Related]

  • 2. Accurate transcription of cloned Xenopus rRNA genes by RNA polymerase I: demonstration by S1 nuclease mapping.
    Sollner-Webb B, McKnight SL.
    Nucleic Acids Res; 1982 Jun 11; 10(11):3391-405. PubMed ID: 6285299
    [Abstract] [Full Text] [Related]

  • 3. Nested control regions promote Xenopus ribosomal RNA synthesis by RNA polymerase I.
    Sollner-Webb B, Wilkinson JA, Roan J, Reeder RH.
    Cell; 1983 Nov 11; 35(1):199-206. PubMed ID: 6684995
    [Abstract] [Full Text] [Related]

  • 4. Transcription of Xenopus ribosomal RNA genes by RNA polymerase I in vitro.
    Wilkinson JK, Sollner-Webb B.
    J Biol Chem; 1982 Dec 10; 257(23):14375-83. PubMed ID: 7142215
    [Abstract] [Full Text] [Related]

  • 5. The nucleotide sequence of the initiation and termination sites for ribosomal RNA transcription in X. laevis.
    Sollner-Webb B, Reeder RH.
    Cell; 1979 Oct 10; 18(2):485-99. PubMed ID: 498280
    [Abstract] [Full Text] [Related]

  • 6. Transcription in cloned spacers of Xenopus laevis ribosomal DNA.
    Morgan GT, Reeder RH, Bakken AH.
    Proc Natl Acad Sci U S A; 1983 Nov 10; 80(21):6490-4. PubMed ID: 6579535
    [Abstract] [Full Text] [Related]

  • 7. A transcriptional function for the repetitive ribosomal spacer in Xenopus laevis.
    Moss T.
    Nature; 1983 Nov 10; 302(5905):223-8. PubMed ID: 6835360
    [Abstract] [Full Text] [Related]

  • 8. Readthrough enhancement and promoter occlusion on the ribosomal genes of Xenopus laevis.
    Moss T, Larose AM, Mitchelson K, Leblanc B.
    Biochem Cell Biol; 1992 May 10; 70(5):324-31. PubMed ID: 1497859
    [Abstract] [Full Text] [Related]

  • 9. Upstream domains of the Xenopus laevis rDNA promoter are revealed in microinjected oocytes.
    Windle J, Sollner-Webb B.
    Mol Cell Biol; 1986 Apr 10; 6(4):1228-34. PubMed ID: 3785161
    [Abstract] [Full Text] [Related]

  • 10. Enhancer-like properties of the 60/81 bp elements in the ribosomal gene spacer of Xenopus laevis.
    Labhart P, Reeder RH.
    Cell; 1984 May 10; 37(1):285-9. PubMed ID: 6722873
    [Abstract] [Full Text] [Related]

  • 11. A component of Drosophila RNA polymerase I promoter lies within the rRNA transcription unit.
    Kohorn BD, Rae PM.
    Nature; 1984 May 10; 304(5922):179-81. PubMed ID: 6306476
    [Abstract] [Full Text] [Related]

  • 12. Xenopus ribosomal RNA gene intergenic spacer elements conferring transcriptional enhancement and nucleolar dominance-like competition in oocytes.
    Caudy AA, Pikaard CS.
    J Biol Chem; 2002 Aug 30; 277(35):31577-84. PubMed ID: 12080048
    [Abstract] [Full Text] [Related]

  • 13. An RNA polymerase I termination site can stimulate the adjacent ribosomal gene promoter by two distinct mechanisms in Xenopus laevis.
    McStay B, Reeder RH.
    Genes Dev; 1990 Jul 30; 4(7):1240-51. PubMed ID: 2210376
    [Abstract] [Full Text] [Related]

  • 14. A 140-base-pair repetitive sequence element in the mouse rRNA gene spacer enhances transcription by RNA polymerase I in a cell-free system.
    Kuhn A, Deppert U, Grummt I.
    Proc Natl Acad Sci U S A; 1990 Oct 30; 87(19):7527-31. PubMed ID: 2217183
    [Abstract] [Full Text] [Related]

  • 15. Functional difference between the sites of ribosomal 40S precursor 3' end formation in Xenopus laevis and Xenopus borealis.
    Labhart P, Reeder RH.
    Nucleic Acids Res; 1990 Sep 11; 18(17):5271-7. PubMed ID: 2402447
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. RNA polymerase I-dependent selective transcription of yeast ribosomal DNA. Identification of a new cellular ribosomal RNA precursor.
    Swanson ME, Holland MJ.
    J Biol Chem; 1983 Mar 10; 258(5):3242-50. PubMed ID: 6298229
    [Abstract] [Full Text] [Related]

  • 19. A termination site for Xenopus RNA polymerase I also acts as an element of an adjacent promoter.
    McStay B, Reeder RH.
    Cell; 1986 Dec 26; 47(6):913-20. PubMed ID: 3779846
    [Abstract] [Full Text] [Related]

  • 20. Ribosomal gene promoter domains can function as artificial enhancers of RNA polymerase I transcription, supporting a promoter origin for natural enhancers in Xenopus.
    Pikaard CS.
    Proc Natl Acad Sci U S A; 1994 Jan 18; 91(2):464-8. PubMed ID: 8290549
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.