These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
90 related items for PubMed ID: 7149285
21. Uncoupling histogenesis from morphogenesis in the vertebrate embryo by collapse of the transneural tube potential. Borgens RB, Shi R. Dev Dyn; 1995 Aug; 203(4):456-67. PubMed ID: 7496037 [Abstract] [Full Text] [Related]
22. Modulation of early but not later stages of programmed cell death in embryonic avian spinal cord by sonic hedgehog. Oppenheim RW, Homma S, Marti E, Prevette D, Wang S, Yaginuma H, McMahon AP. Mol Cell Neurosci; 1999 May; 13(5):348-61. PubMed ID: 10356297 [Abstract] [Full Text] [Related]
23. Characterization of intercellular junctions in the caudal portion of the developing neural tube of the chick embryo. Schoenwolf GC, Kelley RO. Am J Anat; 1980 May; 158(1):29-41. PubMed ID: 7416045 [Abstract] [Full Text] [Related]
24. The thickness of the ventral midline of the spinal cord in human embryos during the fifth week. Woźniak W, Lupicka J, Sroka A, Bruska M, Pytel A. Folia Morphol (Warsz); 2008 Aug; 67(3):205-8. PubMed ID: 18828103 [Abstract] [Full Text] [Related]
25. Variations in development of the caudal neural tube in human embryos (Horizons XIV-XXI). Lemire RJ. Teratology; 1969 Nov; 2(4):361-9. PubMed ID: 5362426 [No Abstract] [Full Text] [Related]
26. Development of the posterior neural tube in human embryos. Saitsu H, Yamada S, Uwabe C, Ishibashi M, Shiota K. Anat Embryol (Berl); 2004 Dec; 209(2):107-17. PubMed ID: 15597189 [Abstract] [Full Text] [Related]
27. The fine structure of the spinal cord in human embryos and early fetuses. Wozniak W, O'Rahilly R, Olszewska B. J Hirnforsch; 1980 Dec; 21(1):101-24. PubMed ID: 7381194 [Abstract] [Full Text] [Related]
28. Diversity of contralateral commissural projections in the embryonic rodent spinal cord. Kadison SR, Kaprielian Z. J Comp Neurol; 2004 May 10; 472(4):411-22. PubMed ID: 15065116 [Abstract] [Full Text] [Related]
30. Embryonic development of the mammalian caudal neural tube. Nievelstein RA, Hartwig NG, Vermeij-Keers C, Valk J. Teratology; 1993 Jul 10; 48(1):21-31. PubMed ID: 8351645 [Abstract] [Full Text] [Related]
31. Embryonic hydromyelia: cystic dilatation of the lumbosacral neural tube in human embryos. Ikenouchi J, Uwabe C, Nakatsu T, Hirose M, Shiota K. Acta Neuropathol; 2002 Mar 10; 103(3):248-54. PubMed ID: 11907805 [Abstract] [Full Text] [Related]
32. The development of interneurons in the chick embryo spinal cord following in vivo treatment with retinoic acid. Shiga T, Gaur VP, Yamaguchi K, Oppenheim RW. J Comp Neurol; 1995 Sep 25; 360(3):463-74. PubMed ID: 8543652 [Abstract] [Full Text] [Related]
33. Programmed cell death during the earliest stages of spinal cord development in the chick embryo: a possible means of early phenotypic selection. Homma S, Yaginuma H, Oppenheim RW. J Comp Neurol; 1994 Jul 15; 345(3):377-95. PubMed ID: 7929907 [Abstract] [Full Text] [Related]
34. Meninx primitiva of the spinal cord in human embryos at stage 13 (28 postovulatory days). Guźniczak L, Bruska M, Woźniak W. Folia Morphol (Warsz); 1996 Jul 15; 55(4):274-5. PubMed ID: 9243877 [No Abstract] [Full Text] [Related]
35. Differentiation of the nuclear groups in the posterior horn of the human embryonic spinal cord. Pytel A, Bruska M, Woźniak W. Folia Morphol (Warsz); 2011 Nov 15; 70(4):245-51. PubMed ID: 22117241 [Abstract] [Full Text] [Related]
36. Antisense inhibition of engrailed genes in mouse embryos reveals roles for these genes in craniofacial and neural tube development. Augustine KA, Liu ET, Sadler TW. Teratology; 1995 May 15; 51(5):300-10. PubMed ID: 7482351 [Abstract] [Full Text] [Related]
37. Ontogeny and effect of activity on proenkephalin mRNA expression during development of the chick spinal cord. Garner LK, Mendelson B, Albers KM, Kindy M, Overbeck TL, Davis BM. J Comp Neurol; 1994 Sep 01; 347(1):36-46. PubMed ID: 7798381 [Abstract] [Full Text] [Related]
38. Role of the brachial somites in the development of the appendicular musculature in rat embryos. Lee KK, Sze LY. Dev Dyn; 1993 Oct 01; 198(2):86-96. PubMed ID: 8305709 [Abstract] [Full Text] [Related]
39. Myogenic specification of somites is mediated by diffusible factors. Buffinger N, Stockdale FE. Dev Biol; 1995 May 01; 169(1):96-108. PubMed ID: 7750661 [Abstract] [Full Text] [Related]
40. Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia. Burns AJ, Champeval D, Le Douarin NM. Dev Biol; 2000 Mar 01; 219(1):30-43. PubMed ID: 10677253 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]