These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
147 related items for PubMed ID: 7161280
21. The nature of the calcium ion efflux induced in rat liver mitochondria by the oxidation of endogenous nicotinamide nucleotides. Nicholls DG, Brand MD. Biochem J; 1980 Apr 15; 188(1):113-8. PubMed ID: 7406874 [Abstract] [Full Text] [Related]
22. Periodate-oxidized ATP stimulates the permeability transition of rat liver mitochondria. Henke W, Hagen T, Jung K, Loening SA. Biochim Biophys Acta; 1998 Mar 25; 1363(3):209-16. PubMed ID: 9518617 [Abstract] [Full Text] [Related]
23. Allosteric inhibition of the Ca2+-activated hydrophilic channel of the mitochondrial inner membrane by nucleotides. Haworth RA, Hunter DR. J Membr Biol; 1980 Jun 15; 54(3):231-6. PubMed ID: 6248646 [Abstract] [Full Text] [Related]
24. ATP-Mg/Pi carrier activity in rat liver mitochondria. Nosek MT, Aprille JR. Arch Biochem Biophys; 1992 Aug 01; 296(2):691-7. PubMed ID: 1632654 [Abstract] [Full Text] [Related]
25. Inhibition of Na+-dependent Ca2+ efflux from heart mitochondria by amiloride analogues. Jurkowitz MS, Altschuld RA, Brierley GP, Cragoe EJ. FEBS Lett; 1983 Oct 17; 162(2):262-5. PubMed ID: 6628670 [Abstract] [Full Text] [Related]
26. Phosphate-induced efflux of adenine nucleotides from rat-heart mitochondria: evaluation of the roles of the phosphate/hydroxyl exchanger and the dicarboxylate carrier. Wilson DE, Asimakis GK. Biochim Biophys Acta; 1987 Oct 07; 893(3):470-9. PubMed ID: 3651445 [Abstract] [Full Text] [Related]
27. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel. Kannurpatti SS, Joshi PG, Joshi NB. Neurochem Res; 2000 Dec 07; 25(12):1527-36. PubMed ID: 11152381 [Abstract] [Full Text] [Related]
28. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength. Bradshaw PC, Pfeiffer DR. BMC Biochem; 2006 Feb 06; 7():4. PubMed ID: 16460565 [Abstract] [Full Text] [Related]
29. A re-evaluation of the role of matrix acidification in uncoupler-induced Ca2+ release from mitochondria. Vajda S, Mándi M, Konràd C, Kiss G, Ambrus A, Adam-Vizi V, Chinopoulos C. FEBS J; 2009 May 06; 276(10):2713-24. PubMed ID: 19459934 [Abstract] [Full Text] [Related]
30. Pathways for Ca2+ efflux in heart and liver mitochondria. Rizzuto R, Bernardi P, Favaron M, Azzone GF. Biochem J; 1987 Sep 01; 246(2):271-7. PubMed ID: 3689311 [Abstract] [Full Text] [Related]
31. Studies on the energy-linked Ca2+ accumulation in pig heart mitochondria - role of Mg2'ons. Vial C, Otokore A, Goldschmidt D, Gautheron DC. Biochimie; 1978 Sep 01; 60(2):159-69. PubMed ID: 667169 [Abstract] [Full Text] [Related]
32. Further characterization of the events involved in mitochondrial Ca2+ release and pore formation by prooxidants. Weis M, Kass GE, Orrenius S. Biochem Pharmacol; 1994 Jun 15; 47(12):2147-56. PubMed ID: 7518235 [Abstract] [Full Text] [Related]
33. Mechanism of sodium independent calcium efflux from rat liver mitochondria. Gunter TE, Chace JH, Puskin JS, Gunter KK. Biochemistry; 1983 Dec 20; 22(26):6341-51. PubMed ID: 6661437 [Abstract] [Full Text] [Related]
34. Parallel efflux of Ca2+ and Pi in energized rat liver mitochondria. Rugolo M, Siliprandi D, Siliprandi N, Toninello A. Biochem J; 1981 Dec 15; 200(3):481-6. PubMed ID: 6177312 [Abstract] [Full Text] [Related]
35. Cd2+ versus Ca2+-produced mitochondrial membrane permeabilization: a proposed direct participation of respiratory complexes I and III. Belyaeva EA, Glazunov VV, Korotkov SM. Chem Biol Interact; 2004 Dec 07; 150(3):253-70. PubMed ID: 15560892 [Abstract] [Full Text] [Related]
36. The pathway of inorganic-phosphate efflux from isolated liver mitochondria during adenosine triphosphate hydrolysis. Tyler DD. Biochem J; 1980 Dec 15; 192(3):821-8. PubMed ID: 6453587 [Abstract] [Full Text] [Related]
37. Mechanism of loss of adenine nucleotides from mitochondria during myocardial ischemia. Sandhu GS, Asimakis GK. J Mol Cell Cardiol; 1991 Dec 15; 23(12):1423-35. PubMed ID: 1811058 [Abstract] [Full Text] [Related]
38. Induction of respiration-dependent net efflux of K+ from heart mitochondria by depletion of endogenous divalent cations. Shi GY, Jung DW, Garlid KD, Brierley GP. J Biol Chem; 1980 Nov 10; 255(21):10306-11. PubMed ID: 6776113 [Abstract] [Full Text] [Related]
39. Mechanism of passive Ca2+ permeability of vesicular sarcolemmal preparations from rat hearts. Kupriyanov VV, Preobrazhensky AN, Saks VA. Biochim Biophys Acta; 1983 Feb 10; 728(2):239-53. PubMed ID: 6299343 [Abstract] [Full Text] [Related]
40. Bay K 8644, modifier of calcium transport and energy metabolism in rat heart mitochondria: a new intracellular site of action. Baydoun AR, Markham A, Morgan RM, Sweetman AJ. Br J Pharmacol; 1990 Sep 10; 101(1):15-20. PubMed ID: 1704271 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]