These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


137 related items for PubMed ID: 7180510

  • 1. Distinct effect of contraction and ion transport on NADH fluorescence and lactate production in uterine smooth muscle.
    Rubányi G, Tóth A, Kovách AG.
    Acta Physiol Acad Sci Hung; 1982; 59(1):45-58. PubMed ID: 7180510
    [Abstract] [Full Text] [Related]

  • 2. Effect of ionic environment on oxygen uptake and lactate production of myometrium.
    Kroeger EA.
    Am J Physiol; 1976 Jan; 230(1):158-62. PubMed ID: 1251901
    [Abstract] [Full Text] [Related]

  • 3. Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis.
    James JH, Fang CH, Schrantz SJ, Hasselgren PO, Paul RJ, Fischer JE.
    J Clin Invest; 1996 Nov 15; 98(10):2388-97. PubMed ID: 8941658
    [Abstract] [Full Text] [Related]

  • 4. Role of Na+/K+-ATPase in the high extracellular calcium-induced impairment of rabbit aorta contractile activity.
    Ortega A, Aleixandre A.
    Vascul Pharmacol; 2004 Mar 15; 41(2):75-81. PubMed ID: 15196478
    [Abstract] [Full Text] [Related]

  • 5. Metabolic correlates to pacemaker activity in the smooth muscle of guinea-pig mesotubarium.
    Lydrup ML, Hellstrand P.
    Acta Physiol Scand; 1991 Feb 15; 141(2):263-72. PubMed ID: 1904676
    [Abstract] [Full Text] [Related]

  • 6. Interaction of Na+ and K+ transport with aerobic energy metabolism in slices of Morris hepatoma 3924A.
    Galeotti T, van Rossum GD, Russo MA, Palombini G.
    Cancer Res; 1976 Nov 15; 36(11 Pt 1):4175-84. PubMed ID: 184927
    [Abstract] [Full Text] [Related]

  • 7. Cytoplasmic redox potential affects energetics and contractile reactivity of vascular smooth muscle.
    Barron JT, Gu L, Parrillo JE.
    J Mol Cell Cardiol; 1997 Aug 15; 29(8):2225-32. PubMed ID: 9281453
    [Abstract] [Full Text] [Related]

  • 8. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD, James JH, Luchette FA, Wang L, Friend LA, King JK, Evans JM, George MA, Fischer JE.
    J Surg Res; 2001 Aug 15; 99(2):235-44. PubMed ID: 11469892
    [Abstract] [Full Text] [Related]

  • 9. Influence of the sodium gradient on contractile activity in pregnant rat myometrium.
    Savineau JP, Mironneau J, Mironneau C.
    Gen Physiol Biophys; 1987 Dec 15; 6(6):535-59. PubMed ID: 3443284
    [Abstract] [Full Text] [Related]

  • 10. Effects of ouabain on contractions induced by manganese ions in C2+a-free, isotonic solutions with varying concentrations of K+ in guinea-pig taenia coli.
    Nasu T, Takahashi K.
    Fundam Clin Pharmacol; 2005 Jun 15; 19(3):355-63. PubMed ID: 15910660
    [Abstract] [Full Text] [Related]

  • 11. Role of Na,K pumps in restoring contractility following loss of cell membrane integrity in rat skeletal muscle.
    Clausen T, Gissel H.
    Acta Physiol Scand; 2005 Mar 15; 183(3):263-71. PubMed ID: 15743386
    [Abstract] [Full Text] [Related]

  • 12. K+ transport in resting rat hind-limb skeletal muscle in response to paraxanthine, a caffeine metabolite.
    Hawke TJ, Willmets RG, Lindinger MI.
    Can J Physiol Pharmacol; 1999 Nov 15; 77(11):835-43. PubMed ID: 10593655
    [Abstract] [Full Text] [Related]

  • 13. Phenazine methosulfate stimulation of ouabain-sensitive Rb+ uptake by HeLa cells: effects of respiratory inhibitors, anaerobiosis, and ascorbate.
    Ikehara T, Yamaguchi H, Hosokawa K, Kaku M, Miyamoto H.
    J Cell Biochem; 1985 Nov 15; 28(4):273-80. PubMed ID: 4055918
    [Abstract] [Full Text] [Related]

  • 14. [Contribution of the Mg2+-, ATP- AND Na+-dependent Ca2+-transport systems to the regulation of Ca2+ concentration in myometrial cells].
    Kosterin CA, Kurskiĭ MD, Zimina VP, Fomin VP, Bratkova NF.
    Biokhimiia; 1984 Jan 15; 49(1):12-9. PubMed ID: 6704445
    [Abstract] [Full Text] [Related]

  • 15. Stretch-dependent modulation of [Na+]i, [Ca2+]i, and pHi in rabbit myocardium--a mechanism for the slow force response.
    Luers C, Fialka F, Elgner A, Zhu D, Kockskämper J, von Lewinski D, Pieske B.
    Cardiovasc Res; 2005 Dec 01; 68(3):454-63. PubMed ID: 16099446
    [Abstract] [Full Text] [Related]

  • 16. The Na+/K(+)-pump in rat peritoneal mast cells: some aspects of regulation of activity and cellular function.
    Knudsen T.
    Dan Med Bull; 1995 Nov 01; 42(5):441-54. PubMed ID: 8747801
    [Abstract] [Full Text] [Related]

  • 17. Calcium-linked adjustment of myocardial metabolism to changing mechanical demands in the isolated rat heart.
    Rubányi G, Kovách AG.
    Acta Physiol Acad Sci Hung; 1980 Nov 01; 55(4):335-43. PubMed ID: 7468250
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Insulin-stimulated NADH/NAD+ redox state increases NAD(P)H oxidase activity in cultured rat vascular smooth muscle cells.
    Yang M, Kahn AM.
    Am J Hypertens; 2006 Jun 01; 19(6):587-92. PubMed ID: 16733230
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.