These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Prediction of auditory brainstem wave V latency as a diagnostic tool of sensorineural hearing loss. Prosser S, Arslan E. Audiology; 1987 Dec; 26(3):179-87. PubMed ID: 3662941 [Abstract] [Full Text] [Related]
3. Human auditory nerve action potentials and brain stem evoked responses: effects of audiogram shape and lesion location. Coats AC, Martin JL. Arch Otolaryngol; 1977 Oct; 103(10):605-22. PubMed ID: 907564 [Abstract] [Full Text] [Related]
4. Cochlear nerve action potentials during cerebellopontine angle surgery: relationship of latency, amplitude, and threshold measurements to hearing. Stanton SG, Cashman MZ, Harrison RV, Nedzelski JM, Rowed DW. Ear Hear; 1989 Feb; 10(1):23-8. PubMed ID: 2785941 [Abstract] [Full Text] [Related]
5. [Evoked potentials of the brain stem in normal and pathologic conditions: experience with 692 adult subjects]. Burdo S. Acta Otorhinolaryngol Ital; 1989 Feb; 9 Suppl 24():1-36. PubMed ID: 2686347 [Abstract] [Full Text] [Related]
7. [Phanerogenetic retrocochlear low frequency hearing loss]. Han WJ, Gu R, Yu LM, Zheng JF, Zhou N, Cao JY, Wang L. Zhonghua Er Bi Yan Hou Ke Za Zhi; 2003 Dec; 38(6):459-64. PubMed ID: 15040112 [Abstract] [Full Text] [Related]
9. [Importance of intraoperative monitoring of ABR and compound action potential of the eighth cranial nerve during microvascular decompression surgery]. Nishihara K, Hanakita J, Kinuta Y, Kondo A, Yamamoto Y, Nakatani H. No Shinkei Geka; 1986 Mar; 14(4):509-18. PubMed ID: 3713977 [Abstract] [Full Text] [Related]
10. Brainstem auditory evoked potential monitoring: when is change in wave V significant? James ML, Husain AM. Neurology; 2005 Nov 22; 65(10):1551-5. PubMed ID: 16301480 [Abstract] [Full Text] [Related]
11. Frequency-specific electrocochleography indicates that presynaptic and postsynaptic mechanisms of auditory neuropathy exist. McMahon CM, Patuzzi RB, Gibson WP, Sanli H. Ear Hear; 2008 Jun 22; 29(3):314-25. PubMed ID: 18344874 [Abstract] [Full Text] [Related]
13. Activity-dependent developmental plasticity of the auditory brain stem in children who use cochlear implants. Gordon KA, Papsin BC, Harrison RV. Ear Hear; 2003 Dec 22; 24(6):485-500. PubMed ID: 14663348 [Abstract] [Full Text] [Related]
14. [Origin of N1 wave of the cochlear nerve action potential recorded at the bony wall of the cochlea]. Matsushima J. Hokkaido Igaku Zasshi; 1982 Sep 22; 57(5):602-13. PubMed ID: 7152466 [Abstract] [Full Text] [Related]
15. Deterioration of auditory evoked potentials during cerebellopontine angle manipulations. An interpretation based on an experimental model in dogs. Sekiya T, Iwabuchi T, Kamata S, Ishida T. J Neurosurg; 1985 Oct 22; 63(4):598-607. PubMed ID: 3875697 [Abstract] [Full Text] [Related]
17. ABR in eighth-nerve and brain-stem disorders. Musiek FE. Am J Otol; 1982 Jan 22; 3(3):243-8. PubMed ID: 7055237 [Abstract] [Full Text] [Related]
18. Objective measures of cochlear frequency selectivity in animals and in man. A review. Harrison RV. Acta Neurol Belg; 1984 Jan 22; 84(5):213-32. PubMed ID: 6395611 [Abstract] [Full Text] [Related]
19. Autism and auditory brain stem responses. Rosenhall U, Nordin V, Brantberg K, Gillberg C. Ear Hear; 2003 Jun 22; 24(3):206-14. PubMed ID: 12799542 [Abstract] [Full Text] [Related]