These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


205 related items for PubMed ID: 7187587

  • 21. The prothrombinase reaction: "mechanism switching" between Michaelis-Menten and non-Michaelis-Menten behaviors.
    Lu Y, Nelsestuen GL.
    Biochemistry; 1996 Jun 25; 35(25):8201-9. PubMed ID: 8679574
    [Abstract] [Full Text] [Related]

  • 22. Kinetic analysis of human deoxycytidine kinase with the true phosphate donor uridine triphosphate.
    Hughes TL, Hahn TM, Reynolds KK, Shewach DS.
    Biochemistry; 1997 Jun 17; 36(24):7540-7. PubMed ID: 9200705
    [Abstract] [Full Text] [Related]

  • 23. Perspectives of data analysis of enzyme inhibition and activation, part 4: equations for calculation of constants of enzyme activation and inhibition.
    Krupyanko VI.
    J Biochem Mol Toxicol; 2010 Jun 17; 24(3):145-54. PubMed ID: 20583219
    [Abstract] [Full Text] [Related]

  • 24. [Kinetic behavior of slowly equilibrating association-dissociation enzyme systems].
    Kurganov BI, Dorozhko AI, Kagan ZS, Iakovlev VA.
    Mol Biol (Mosk); 1975 Jun 17; 9(4):533-42. PubMed ID: 1214796
    [Abstract] [Full Text] [Related]

  • 25. Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis-Menten constant.
    Rami Tzafriri A, Edelman ER.
    J Theor Biol; 2007 Apr 21; 245(4):737-48. PubMed ID: 17234216
    [Abstract] [Full Text] [Related]

  • 26. [Regulation of two-substrate reaction by substrate analog, as analyzed by graphic methods].
    Gol'dshteĭn BN, Saburova EA, Vol'kenshteĭn MV.
    Mol Biol (Mosk); 1981 Apr 21; 15(1):132-8. PubMed ID: 7335071
    [Abstract] [Full Text] [Related]

  • 27. Simultaneous ethanol and cellobiose inhibition of cellulose hydrolysis studied with integrated equations assuming constant or variable substrate concentration.
    Bezerra RM, Dias AA, Fraga I, Pereira AN.
    Appl Biochem Biotechnol; 2006 Jul 21; 134(1):27-38. PubMed ID: 16891664
    [Abstract] [Full Text] [Related]

  • 28. Determination of kinetic parameters of enzyme-catalyzed reactions with a minimum number of velocity measurements.
    Alberty RA.
    J Theor Biol; 2008 Sep 07; 254(1):156-63. PubMed ID: 18582902
    [Abstract] [Full Text] [Related]

  • 29. Kinetic analysis of modification reactions at comparable enzyme and modifier concentrations.
    Zhao KY, Wang ZX.
    J Theor Biol; 1996 Aug 21; 181(4):319-27. PubMed ID: 8949580
    [Abstract] [Full Text] [Related]

  • 30. Theoretical assessment of a new experimental protocol for determining kinetic values describing mechanism (time)-based enzyme inhibition.
    Yang J, Jamei M, Yeo KR, Tucker GT, Rostami-Hodjegan A.
    Eur J Pharm Sci; 2007 Jul 21; 31(3-4):232-41. PubMed ID: 17512176
    [Abstract] [Full Text] [Related]

  • 31. [Theoretical analysis of action of substrate analogs in dissociating enzyme systems].
    Kurganov BI.
    Mol Biol (Mosk); 1979 Jul 21; 13(3):649-55. PubMed ID: 460211
    [Abstract] [Full Text] [Related]

  • 32. The use of isotope effects to determine enzyme mechanisms.
    Cleland WW.
    Arch Biochem Biophys; 2005 Jan 01; 433(1):2-12. PubMed ID: 15581561
    [Abstract] [Full Text] [Related]

  • 33. Phosphoglycerate kinase--glyceraldehyde-3-phosphate dehydrogenase interaction: reaction rate studies.
    Prabhakar P, Malhotra OP, Kayastha AM.
    Indian J Biochem Biophys; 1999 Apr 01; 36(2):88-100. PubMed ID: 10549168
    [Abstract] [Full Text] [Related]

  • 34. Transient enzyme kinetics: graph-theoretic approach.
    Goldstein BN.
    Biophys Chem; 2009 May 01; 141(2-3):193-7. PubMed ID: 19233540
    [Abstract] [Full Text] [Related]

  • 35. Prediction of enzyme kinetic parameters based on statistical learning.
    Borger S, Liebermeister W, Klipp E.
    Genome Inform; 2006 May 01; 17(1):80-7. PubMed ID: 17503358
    [Abstract] [Full Text] [Related]

  • 36. [The method of Hill's coefficient calculation for the region of inhibition of an enzyme by excess of the substrate. Inhibition of phosphofructokinase by excess of ATP].
    Kurganov BI.
    Biokhimiia; 1978 Mar 01; 43(3):480-5. PubMed ID: 148918
    [Abstract] [Full Text] [Related]

  • 37. Structure-reactivity relationships for the inhibition mechanism at the second alkyl-chain-binding site of cholesterol esterase and lipase.
    Lin G, Shieh CT, Ho HC, Chouhwang JY, Lin WY, Lu CP.
    Biochemistry; 1999 Aug 03; 38(31):9971-81. PubMed ID: 10433704
    [Abstract] [Full Text] [Related]

  • 38. Inhibition of spinach D-glyceraldehyde 3-phosphate: NADP+ oxidoreductase (nonphosphorylating) by adenylate compounds: the effect of dead-end inhibitors on a steady state random reaction mechanism.
    Trost P, Pupillo P.
    Arch Biochem Biophys; 1993 Oct 03; 306(1):76-82. PubMed ID: 8215424
    [Abstract] [Full Text] [Related]

  • 39. Application of a normalised plot to the study of ter ter enzyme systems.
    Bravo IG, Reglero A.
    Biochimie; 2004 Jul 03; 86(7):463-9. PubMed ID: 15308335
    [Abstract] [Full Text] [Related]

  • 40. A graphical method for determining the number of essential sites in enzymes with multiple binding sites for a ligand.
    Wang ZX, Srivastava DK.
    Anal Biochem; 1994 Jan 03; 216(1):15-26. PubMed ID: 8135345
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.