These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


163 related items for PubMed ID: 718871

  • 1. Effect of cholesterol on the molecular motion in the hydrocarbon region of lecithin bilayers studied by nanosecond fluorescence techniques.
    Kawato S, Kinosita K, Ikegami A.
    Biochemistry; 1978 Nov 14; 17(23):5026-31. PubMed ID: 718871
    [Abstract] [Full Text] [Related]

  • 2. Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques.
    Kawato S, Kinosita K, Ikegami A.
    Biochemistry; 1977 May 31; 16(11):2319-24. PubMed ID: 577184
    [Abstract] [Full Text] [Related]

  • 3. Effect of double bonds on the dynamic properties of the hydrocarbon region of lecithin bilayers.
    Stubbs CD, Kouyama T, Kinosita K, Ikegami A.
    Biochemistry; 1981 Jul 21; 20(15):4257-62. PubMed ID: 7284325
    [Abstract] [Full Text] [Related]

  • 4. Fluorescence quenching in lecithin and lecithin/cholesterol liposomes by parmagenetic lipid analogues. Introduction of a new probe approach.
    Bieri VG, Wallach DF.
    Biochim Biophys Acta; 1975 May 21; 389(3):413-27. PubMed ID: 164944
    [Abstract] [Full Text] [Related]

  • 5. Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyllecithin vesicles and the determination of "microviscosity".
    Chen LA, Dale RE, Roth S, Brand L.
    J Biol Chem; 1977 Apr 10; 252(7):2163-9. PubMed ID: 849925
    [Abstract] [Full Text] [Related]

  • 6. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers.
    Bernsdorff C, Wolf A, Winter R, Gratton E.
    Biophys J; 1997 Mar 10; 72(3):1264-77. PubMed ID: 9138572
    [Abstract] [Full Text] [Related]

  • 7. Fluorospectroscopic studies of various ganglioside and ganglioside--lecithin dispersions. Steady-state and time-resolved fluorescence measurements with 1,6-diphenyl-1,3,5-hexatriene.
    Uchida T, Nagai Y, Kawasaki Y, Wakayama N.
    Biochemistry; 1981 Jan 06; 20(1):162-9. PubMed ID: 7193482
    [Abstract] [Full Text] [Related]

  • 8. Rotational diffusion of a steroid molecule in phosphatidylcholine-cholesterol membranes: fluid-phase microimmiscibility in unsaturated phosphatidylcholine-cholesterol membranes.
    Pasenkiewicz-Gierula M, Subczynski WK, Kusumi A.
    Biochemistry; 1990 May 01; 29(17):4059-69. PubMed ID: 2163271
    [Abstract] [Full Text] [Related]

  • 9. Rotational relaxation of the "microviscosity" probe diphenylhexatriene in paraffin oil and egg lecithin vesicles.
    Dale RE, Chen LA, Brand L.
    J Biol Chem; 1977 Nov 10; 252(21):7500-10. PubMed ID: 914824
    [Abstract] [Full Text] [Related]

  • 10. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 1. Single component phosphatidylcholine liposomes.
    Lentz BR, Barenholz Y, Thompson TE.
    Biochemistry; 1976 Oct 05; 15(20):4521-8. PubMed ID: 974073
    [Abstract] [Full Text] [Related]

  • 11. Dynamic structure of biological and model membranes: analysis by optical anisotropy decay measurement.
    Kinosita K, Kawato S, Ikegami A.
    Adv Biophys; 1984 Oct 05; 17():147-203. PubMed ID: 6399815
    [Abstract] [Full Text] [Related]

  • 12. Effect of cholesterol on molecular order and dynamics in highly polyunsaturated phospholipid bilayers.
    Mitchell DC, Litman BJ.
    Biophys J; 1998 Aug 05; 75(2):896-908. PubMed ID: 9675190
    [Abstract] [Full Text] [Related]

  • 13. Dynamic structure of biological membranes as probed by 1,6-diphenyl-1,3,5-hexatriene: a nanosecond fluorescence depolarization study.
    Kinosita K, Kataoka R, Kimura Y, Gotoh O, Ikegami A.
    Biochemistry; 1981 Jul 21; 20(15):4270-7. PubMed ID: 7284326
    [Abstract] [Full Text] [Related]

  • 14. Vibrational Raman spectra of lipid systems containing amphotericin B.
    Bunow MR, Levin IW.
    Biochim Biophys Acta; 1977 Jan 04; 464(1):202-16. PubMed ID: 831791
    [Abstract] [Full Text] [Related]

  • 15. Influence of cholesterol on the polar region of phosphatidylcholine and phosphatidylethanolamine bilayers.
    Brown MF, Seelig J.
    Biochemistry; 1978 Jan 24; 17(2):381-4. PubMed ID: 619997
    [Abstract] [Full Text] [Related]

  • 16. Dynamics of the bilayer-water interface of phospholipid vesicles and the effect of cholesterol: a picosecond fluorescence anisotropy study.
    Saito H, Araiso T, Shirahama H, Koyama T.
    J Biochem; 1991 Apr 24; 109(4):559-65. PubMed ID: 1869508
    [Abstract] [Full Text] [Related]

  • 17. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2 Two-component phosphatidylcholine liposomes.
    Lentz BR, Barenholz Y, Thompson TE.
    Biochemistry; 1976 Oct 05; 15(20):4529-37. PubMed ID: 974074
    [Abstract] [Full Text] [Related]

  • 18. Sphingomyelin--lecithin bilayers and their interaction with cholesterol.
    Calhoun WI, Shipley GG.
    Biochemistry; 1979 May 01; 18(9):1717-22. PubMed ID: 435481
    [Abstract] [Full Text] [Related]

  • 19. Nanosecond time-resolved fluorescence investigations of temperature-induced conformational changes in cytochrome oxidase in phosphatidylcholine vesicles and solubilized systems.
    Kawato S, Yoshida S, Orii Y, Ikegami A, Kinosita K.
    Biochim Biophys Acta; 1981 Jan 14; 634(1):85-92. PubMed ID: 6258646
    [Abstract] [Full Text] [Related]

  • 20. An ESR Spin label study of structural and dynamical properties of oriented lecithin-cholesterol multibilayers.
    Hemminga MA.
    Chem Phys Lipids; 1975 Apr 14; 14(2):151-73. PubMed ID: 165012
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.