These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
78 related items for PubMed ID: 7211065
1. Creatine transport into red blood cells. Syllm-Rapoport I, Daniel A, Rapoport S. Acta Biol Med Ger; 1980; 39(7):771-9. PubMed ID: 7211065 [Abstract] [Full Text] [Related]
2. [Behavior of creatine in red blood cells and in plasma of children with chronic kidney insufficiency]. Eggert W, Syllm-Rapoport I, Daniel A, Wolf S. Helv Paediatr Acta; 1983 Aug; 38(3):281-90. PubMed ID: 6618894 [Abstract] [Full Text] [Related]
3. A mathematical model for the cell age-dependent decline of creatine in human cell cells. Holzhütter HG, Syllm-Rapoport I, Daniel A. Biomed Biochim Acta; 1984 Aug; 43(2):153-8. PubMed ID: 6732753 [Abstract] [Full Text] [Related]
4. [Creatine content in erythrocytes and blood plasma of chickens before and following stimulation of erythropoiesis by anemia]. Syllm-Rapoport I, Daniel A, Dumdey E. Acta Biol Med Ger; 1980 Aug; 39(10):1015-9. PubMed ID: 7223253 [Abstract] [Full Text] [Related]
5. Analysis of creatine, creatinine, creatine-d3 and creatinine-d3 in urine, plasma, and red blood cells by HPLC and GC-MS to follow the fate of ingested creatine-d3. MacNeil L, Hill L, MacDonald D, Keefe L, Cormier JF, Burke DG, Smith-Palmer T. J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Dec 05; 827(2):210-5. PubMed ID: 16182618 [Abstract] [Full Text] [Related]
7. Na(+)-H+ and Na(+)-Li+ exchange are mediated by the same membrane transport protein in human red blood cells: an NMR investigation. Chi Y, Mo S, Mota de Freitas D. Biochemistry; 1996 Sep 24; 35(38):12433-42. PubMed ID: 8823178 [Abstract] [Full Text] [Related]
8. Effect of carbon dioxide on the temperature dependence of anion exchange in human red cells. Baker GF, Baker P. Cytobios; 1995 Sep 24; 82(330):189-200. PubMed ID: 7497739 [Abstract] [Full Text] [Related]
9. Regulation of intracellular creatine in erythrocytes and myoblasts: influence of uraemia and inhibition of Na,K-ATPase. Bennett SE, Bevington A, Walls J. Cell Biochem Funct; 1994 Jun 24; 12(2):99-106. PubMed ID: 8044895 [Abstract] [Full Text] [Related]
10. Brain iron homeostasis. Moos T. Dan Med Bull; 2002 Nov 24; 49(4):279-301. PubMed ID: 12553165 [Abstract] [Full Text] [Related]
11. Amiloride-sensitive sodium transport in lamprey red blood cells: evidence for two distinct transport pathways. Gusev GP, Ivanova TI. Gen Physiol Biophys; 2004 Dec 24; 23(4):443-56. PubMed ID: 15815079 [Abstract] [Full Text] [Related]
12. L-Cysteine influx and efflux: a possible role for red blood cells in regulation of redox status of the plasma. Yildiz D, Uslu C, Cakir Y, Oztas H. Free Radic Res; 2006 May 24; 40(5):507-12. PubMed ID: 16551577 [Abstract] [Full Text] [Related]
13. Changes of phosphatidylserine distribution in human red blood cells during the process of loading sugars. Quan GB, Liu MX, Ren SP, Zhang JG, Han Y. Cryobiology; 2006 Aug 24; 53(1):107-18. PubMed ID: 16762335 [Abstract] [Full Text] [Related]
18. Creatine during bleeding anemia of rabbits. Syllm-Rapoport I, Dumdey E, Rapoport S. Acta Biol Med Ger; 1977 Aug 24; 36(3-4):411-4. PubMed ID: 596054 [Abstract] [Full Text] [Related]
20. Differences in the transbilayer and lateral motions of fluorescent analogs of phosphatidylcholine and phosphatidylethanolamine in the apical plasma membrane of bovine aortic endothelial cells. Julien M, Tournier JF, Tocanne JF. Exp Cell Res; 1993 Oct 24; 208(2):387-97. PubMed ID: 8375469 [Abstract] [Full Text] [Related] Page: [Next] [New Search]