These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


73 related items for PubMed ID: 7213826

  • 1. [Causative factor of Ca2+ transport reduction by sarcoplasmic reticulum fragments under the action of acetylcholine].
    Esyrev OV, Ritov VB, Uspanova ZhK, Murzakhmetova MK, Nusupova ZhA.
    Biokhimiia; 1980 Jan; 45(1):103-8. PubMed ID: 7213826
    [Abstract] [Full Text] [Related]

  • 2. [Effect of acetycholine on the Ca2+ transport system in sarcoplasmic reticulum of frog skeletal muscle].
    Esyrev OV, Uspanova ZhK.
    Vopr Med Khim; 1976 Jan; 22(1):21-5. PubMed ID: 1035991
    [Abstract] [Full Text] [Related]

  • 3. [Functional properties of fragments of the sarcoplasmic reticulum of the fast and slow muscles of Rana ridibunda frogs].
    Esyrev OV, Uspanova ZhK, Kniazevskaia IB.
    Zh Evol Biokhim Fiziol; 1976 Jan; 12(4):309-13. PubMed ID: 136158
    [Abstract] [Full Text] [Related]

  • 4. [Effect of caffeine and glycerin on the Ca transport system of sarcoplasmic reticulum fragments from frog skeletal muscles].
    Uspanova ZhK, Esyrev OV, Pak AD, Sarsenova ShS, Nusupova ZhA.
    Tsitologiia; 1984 Aug; 26(8):962-5. PubMed ID: 6238465
    [Abstract] [Full Text] [Related]

  • 5. [Passive binding of Ca2+ by fragments of the sarcoplasmic reticulum of frog skeletal muscles].
    Esyrev OV, Sarsenova ShS, Uspanova ZhK, Kniazevskaia IB, Turmukhambetova VK.
    Vopr Med Khim; 1982 Aug; 28(5):51-5. PubMed ID: 6983776
    [Abstract] [Full Text] [Related]

  • 6. [Cause of increase in the efficiency of Ca2+ transport by fragments of sarcoplasmic reticulum from fast skeletal muscles induced by protein kinase].
    Avakian EA, Ritov VB, Kozlov IuP.
    Biokhimiia; 1980 Apr; 45(4):601-8. PubMed ID: 6246973
    [Abstract] [Full Text] [Related]

  • 7. The effect of La3+ on the characteristics of fragmented sarcoplasmic reticulum.
    Kövér A, Szabolcs M, Csabai A.
    Acta Biochim Biophys Acad Sci Hung; 1976 Apr; 11(1):23-35. PubMed ID: 822681
    [Abstract] [Full Text] [Related]

  • 8. [The effect of the external electric field on Ca2+ transport in the sarcoplasmic reticulum].
    Pechatnikov VA, Pletnev VV.
    Biofizika; 1984 Apr; 29(3):438-41. PubMed ID: 6087927
    [Abstract] [Full Text] [Related]

  • 9. Cooperative interaction between Ca2+ and beta,gamma-methylene adenosine triphosphate in their binding to fragmented sarcoplasmic reticulum from bullfrog skeletal muscle.
    Ogawa Y, Kurebayashi N, Harafuji H.
    J Biochem; 1986 Nov; 100(5):1305-18. PubMed ID: 3493243
    [Abstract] [Full Text] [Related]

  • 10. Ca2+-transport in skeletal muscle sarcoplasmic reticulum of the chronically diabetic rat.
    Eibschutz B, Lopaschuk GD, McNeill JH, Katz S.
    Res Commun Chem Pathol Pharmacol; 1984 Aug; 45(2):301-4. PubMed ID: 6484314
    [Abstract] [Full Text] [Related]

  • 11. Differentiation between Ca2+ transport and ATP-induced Ca2+ binding by sarcoplasmic reticulum.
    Vale MG, Carvalho AP.
    Biochim Biophys Acta; 1981 Apr 22; 643(1):168-76. PubMed ID: 6786348
    [Abstract] [Full Text] [Related]

  • 12. [Effect of gradients of monovalent cations on active transport of Ca2+ in the sarcoplasmic reticulum and proteoliposomes].
    Tugaĭ VA, Diadiusha GP, Usatiuk PV, Zemlianaia NN.
    Ukr Biokhim Zh (1978); 1988 Apr 22; 60(1):69-74. PubMed ID: 3363678
    [Abstract] [Full Text] [Related]

  • 13. Kinetic analysis of a model of the sarcoplasmic reticulum Ca-ATPase, with variable stoichiometry, which enhances the amount and the rate of Ca transport.
    Alonso GL, González DA, Takara D, Ostuni MA, Sánchez GA.
    J Theor Biol; 2001 Feb 22; 208(3):251-60. PubMed ID: 11207089
    [Abstract] [Full Text] [Related]

  • 14. Functional effect of hydrogen peroxide on the sarcoplasmic reticulum membrane: uncoupling and irreversible inhibition of the Ca2+-ATPase protein.
    Sánchez S, Fernández-Belda F, Soler F.
    Arch Biochem Biophys; 2004 Nov 15; 431(2):245-51. PubMed ID: 15488473
    [Abstract] [Full Text] [Related]

  • 15. Inositol tetrakisphosphate stimulates a novel ATP-independent Ca2+ uptake mechanism in cardiac junctional sarcoplasmic reticulum.
    Quist EE, Foresman BH, Vasan R, Quist CW.
    Biochem Biophys Res Commun; 1994 Oct 14; 204(1):69-75. PubMed ID: 7945394
    [Abstract] [Full Text] [Related]

  • 16. [ACh and ATP induced calcium mobilization in outer hair cells of the guinea pig cochlea: confocal microscopy].
    Xi X, Jiang SC.
    Sheng Li Xue Bao; 1995 Apr 14; 47(2):105-10. PubMed ID: 7652585
    [Abstract] [Full Text] [Related]

  • 17. Pharmacological differentiation between intracellular calcium pump isoforms.
    Engelender S, De Meis L.
    Mol Pharmacol; 1996 Nov 14; 50(5):1243-52. PubMed ID: 8913356
    [Abstract] [Full Text] [Related]

  • 18. Regulation of calcium pump function in back inhibited vesicles by calcium-ATPase ligands.
    Korge P, Campbell KB.
    Cardiovasc Res; 1995 Apr 14; 29(4):512-9. PubMed ID: 7796445
    [Abstract] [Full Text] [Related]

  • 19. [Carnosine protection of Ca2+ transport against damage induced by lipid peroxidation].
    Dupin AM, Boldyrev AA, Arkhipenko IuV, Kagan VE.
    Biull Eksp Biol Med; 1984 Aug 14; 98(8):186-8. PubMed ID: 6331862
    [Abstract] [Full Text] [Related]

  • 20. Hyperthyroidism increases the uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase.
    Arruda AP, Da-Silva WS, Carvalho DP, De Meis L.
    Biochem J; 2003 Nov 01; 375(Pt 3):753-60. PubMed ID: 12887329
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.