These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


249 related items for PubMed ID: 7218659

  • 21. Renal adaptation to dietary phosphate deprivation: role of proximal tubule brush-border membrane fluidity.
    Levine BS, Knibloe KA, Golchini K, Hashimoto S, Kurtz I.
    Am J Physiol; 1991 May; 260(5 Pt 2):F613-8. PubMed ID: 2035648
    [Abstract] [Full Text] [Related]

  • 22. Glycosphingolipids modulate renal phosphate transport in potassium deficiency.
    Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Béliveau R, Wilson P, Rogers T, Levi M.
    Kidney Int; 2001 Aug; 60(2):694-704. PubMed ID: 11473652
    [Abstract] [Full Text] [Related]

  • 23. Different mechanisms of adaptive increase in Na+-Pi cotransport across renal brush-border membrane.
    Yusufi AN, Szczepanska-Konkel M, Hoppe A, Dousa TP.
    Am J Physiol; 1989 May; 256(5 Pt 2):F852-61. PubMed ID: 2524168
    [Abstract] [Full Text] [Related]

  • 24. Adaptation of phosphate transport to low phosphate diet in renal and intestinal brush border membrane vesicles: influence of sodium and pH.
    Caverzasio J, Danisi G, Straub RW, Murer H, Bonjour JP.
    Pflugers Arch; 1987 Jul; 409(3):333-6. PubMed ID: 3627953
    [Abstract] [Full Text] [Related]

  • 25. Expression of chronic thyroparathyroidectomy on phosphate transport in whole kidney and proximal luminal membranes during phosphate deprivation.
    Caverzasio J, Bonjour JP.
    Pflugers Arch; 1985 Dec; 405(4):395-9. PubMed ID: 4080517
    [Abstract] [Full Text] [Related]

  • 26. Renal apical membrane cholesterol and fluidity in regulation of phosphate transport.
    Molitoris BA, Alfrey AC, Harris RA, Simon FR.
    Am J Physiol; 1985 Jul; 249(1 Pt 2):F12-9. PubMed ID: 3160247
    [Abstract] [Full Text] [Related]

  • 27. Thyroid hormones increase renal brush border membrane transport of phosphate in X-linked hypophosphatemic (Hyp) mice.
    Kiebzak GM, Dousa TP.
    Endocrinology; 1985 Aug; 117(2):613-9. PubMed ID: 4017950
    [Abstract] [Full Text] [Related]

  • 28. Renal tubular sites of increased phosphate transport and NaPi-2 expression in the juvenile rat.
    Woda C, Mulroney SE, Halaihel N, Sun L, Wilson PV, Levi M, Haramati A.
    Am J Physiol Regul Integr Comp Physiol; 2001 May; 280(5):R1524-33. PubMed ID: 11294778
    [Abstract] [Full Text] [Related]

  • 29. Phosphonocarboxylic acids as specific inhibitors of Na+-dependent transport of phosphate across renal brush border membrane.
    Szczepanska-Konkel M, Yusufi AN, VanScoy M, Webster SK, Dousa TP.
    J Biol Chem; 1986 May 15; 261(14):6375-83. PubMed ID: 3009455
    [Abstract] [Full Text] [Related]

  • 30. Renal and intestinal Pi transport adaptation to low phosphorus diet in uremic rats.
    Loghman-Adham M.
    J Am Soc Nephrol; 1993 Jun 15; 3(12):1930-7. PubMed ID: 8338925
    [Abstract] [Full Text] [Related]

  • 31. Inhibition of renal brush border phosphate transport and stimulation of renal gluconeogenesis by cyclic amp and parathyroid hormone.
    Kempson SA, Kowalski JC, Puschett JB.
    Biochem Pharmacol; 1983 May 01; 32(9):1533-7. PubMed ID: 6305371
    [Abstract] [Full Text] [Related]

  • 32. Effect of diphosphonate treatment on phosphate transport by renal brush border vesicles.
    Stoll R, Fleisch H, Bonjour JP.
    Am J Physiol; 1980 Jul 01; 239(1):F13-6. PubMed ID: 6772037
    [Abstract] [Full Text] [Related]

  • 33. Low-Pi diet increases the abundance of an apical protein in rat proximal-tubular S3 segments.
    Levi M, Arar M, Kaissling B, Murer H, Biber J.
    Pflugers Arch; 1994 Jan 01; 426(1-2):5-11. PubMed ID: 8146025
    [Abstract] [Full Text] [Related]

  • 34. Sulphate and phosphate transport in the renal proximal tubule.
    Ullrich KJ, Murer H.
    Philos Trans R Soc Lond B Biol Sci; 1982 Dec 01; 299(1097):549-58. PubMed ID: 6130546
    [Abstract] [Full Text] [Related]

  • 35. Thyroid hormones stimulate Na+-Pi transport activity in rat renal brush-border membranes: role of membrane lipid composition and fluidity.
    Prasad R, Kumar V.
    Mol Cell Biochem; 2005 Jan 01; 268(1-2):75-82. PubMed ID: 15724440
    [Abstract] [Full Text] [Related]

  • 36. Effect of metabolic acidosis on phosphate transport by the renal brush-border membrane.
    Levine BS, Ho K, Kraut JA, Coburn JW, Kurokawa K.
    Biochim Biophys Acta; 1983 Jan 05; 727(1):7-12. PubMed ID: 6824655
    [Abstract] [Full Text] [Related]

  • 37. gamma-L-glutamyl-L-DOPA inhibits Na(+)-phosphate cotransport across renal brush border membranes and increases renal excretion of phosphate.
    de Toledo FG, Thompson MA, Bolliger C, Tyce GM, Dousa TP.
    Kidney Int; 1999 May 05; 55(5):1832-42. PubMed ID: 10231445
    [Abstract] [Full Text] [Related]

  • 38. Effect of metabolic acidosis on renal brushborder membrane adaptation to low phosphorus diet.
    Kempson SA.
    Kidney Int; 1982 Sep 05; 22(3):225-33. PubMed ID: 7176325
    [Abstract] [Full Text] [Related]

  • 39. Cellular mechanisms of acute and chronic adaptation of rat renal P(i) transporter to alterations in dietary P(i).
    Levi M, Lötscher M, Sorribas V, Custer M, Arar M, Kaissling B, Murer H, Biber J.
    Am J Physiol; 1994 Nov 05; 267(5 Pt 2):F900-8. PubMed ID: 7977794
    [Abstract] [Full Text] [Related]

  • 40. Unchanged expression of the sodium-dependent phosphate cotransporter NaPi-IIa despite diurnal changes in renal phosphate excretion.
    Bielesz B, Bacic D, Honegger K, Biber J, Murer H, Wagner CA.
    Pflugers Arch; 2006 Sep 05; 452(6):683-9. PubMed ID: 16710700
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.