These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


103 related items for PubMed ID: 722517

  • 1. A mechanism for the fall in resting potassium conductance of frog skeletal muscle fibres occurring under extreme hyperpolarization [proceedings].
    Standen NB, Stanfield PR.
    J Physiol; 1978 Sep; 282():18P-19P. PubMed ID: 722517
    [No Abstract] [Full Text] [Related]

  • 2. The effect of gramicidin A on the K+ conductance of the membrane of isolated frog skeletal muscle fibres.
    Caffier G, Shvinka N.
    Acta Biol Med Ger; 1979 Sep; 38(1):135-7. PubMed ID: 92868
    [Abstract] [Full Text] [Related]

  • 3. Voltage-clamp experiments on the inactivation of the delayed potassium current in skeletal muscle fibres.
    Argibay JA, Hutter OF.
    J Physiol; 1973 Jul; 232(1):41P-43P. PubMed ID: 4733499
    [No Abstract] [Full Text] [Related]

  • 4. Proceedings: Changes in potassium activity within frog sartorius muscle fibres during sodium enrichment in potassium-free Ringer fluid.
    Kernan RP, MacDermott M.
    J Physiol; 1975 Jul; 249(1):25P-26P. PubMed ID: 1151859
    [No Abstract] [Full Text] [Related]

  • 5. Potential-dependent blockade by Ba2+ of resting potassium permeability of frog sartorius [proceedings].
    Standen NB, Stanfield PR.
    J Physiol; 1978 Apr; 277():70P-71P. PubMed ID: 650578
    [No Abstract] [Full Text] [Related]

  • 6. Proceedings: Measurement of chloride activity within frog sartorius muscle fibres by means of chloride-sensitive micro-electrodes.
    Kernan RP, MacDermott M, Westphal W.
    J Physiol; 1974 Aug; 241(1):60P-61P. PubMed ID: 4419403
    [No Abstract] [Full Text] [Related]

  • 7. Active electrical responses of skeletal muscle fibres in isotonic potassium methylsulphate solution containing formaldehyde.
    Hutter OF.
    J Physiol; 1970 Apr; 207(2):47P-49P. PubMed ID: 5511132
    [No Abstract] [Full Text] [Related]

  • 8. Potential-dependence of the rubidium block of inward rectification in frog skeletal muscle [proceedings].
    Standen NB, Stanfield PR.
    J Physiol; 1979 Oct; 295():55P-56P. PubMed ID: 521971
    [No Abstract] [Full Text] [Related]

  • 9. Proceedings: The effect of metabolic poisons upon the membrane resistance of striated muscle fibres.
    Fink R, Lüttgau HC.
    J Physiol; 1973 Oct; 234(2):29P-30P. PubMed ID: 4767049
    [No Abstract] [Full Text] [Related]

  • 10. Slow sodium conductance inactivation in frog skeletal muscle fibres [proceedings].
    Harvey C, Rojas E, Suarez-Isla BA.
    J Physiol; 1979 Jun; 291():56-P. PubMed ID: 314514
    [No Abstract] [Full Text] [Related]

  • 11. Na/K selectivity, ion conductances and net fluxes of K+ and Na'n metabolically exhausted muscle fibres.
    Fink R, Grocki K, Lüttgau HC.
    Eur J Cell Biol; 1980 Apr; 21(1):109-15. PubMed ID: 6966571
    [Abstract] [Full Text] [Related]

  • 12. A voltage-dependent gate in series with the inwardly rectifying potassium channel in frog striated muscle.
    Mancinelli E, Peres A.
    J Physiol; 1979 Aug; 293():301-18. PubMed ID: 315463
    [Abstract] [Full Text] [Related]

  • 13. The effect of energy deprivation and hyperosmolarity upon tubular structures and electrophysiological parameters of muscle fibres.
    Fink R, Grocki K, Lüttgau HC.
    Eur J Cell Biol; 1980 Apr; 21(1):101-8. PubMed ID: 6966570
    [Abstract] [Full Text] [Related]

  • 14. The chloride conductance of intermediate fibres from frog muscles.
    Lorković H.
    Gen Physiol Biophys; 1987 Dec; 6(6):561-9. PubMed ID: 3502101
    [Abstract] [Full Text] [Related]

  • 15. The effect of the tetraethylammonium ion on the inwardly rectifying potassium channel of frog sartorius muscle.
    Stanfield PR.
    J Physiol; 1969 Jan; 200(1):2P-3P. PubMed ID: 5761954
    [No Abstract] [Full Text] [Related]

  • 16. Effect of temperature on the inward rectifier and gramicidin A-induced channels in the membrane of frog skeletal muscle fibres.
    Caffier G, Shvinka NE.
    Gen Physiol Biophys; 1986 Feb; 5(1):47-51. PubMed ID: 2429894
    [Abstract] [Full Text] [Related]

  • 17. A dual effect of formaldehyde on the inwardly rectifying potassium conductance in skeletal muscle.
    Hutter OF, Williams TL.
    J Physiol; 1979 Jan; 286():591-606. PubMed ID: 312320
    [Abstract] [Full Text] [Related]

  • 18. [The role of potassium and sodium ions in the development of membrane potentials of muscle fibres at a lowered intracellular potassium concentration].
    Martirosov SM.
    Tsitologiia; 1966 Jan; 8(6):750-5. PubMed ID: 5974468
    [No Abstract] [Full Text] [Related]

  • 19. Consecutive activation and inactivation of the delayed rectifier in skeletal muscle fibres.
    Argibay JA, Hutter OF, Slack JR.
    J Physiol; 1974 Mar; 237(2):46P-47P. PubMed ID: 4825463
    [No Abstract] [Full Text] [Related]

  • 20. [Proceedings: 226. After-potential and relaxation of frog skeletal muscle in the tetanic tention (author's transl)].
    Hino N, Matsumura M.
    Nihon Seirigaku Zasshi; 1973 Mar; 35(8):477. PubMed ID: 4799839
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.