These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
194 related items for PubMed ID: 7236
21. Factors affecting the intracellular generation of free radicals from quinones. Powis G, Svingen BA, Appel P. Adv Exp Med Biol; 1981; 136 Pt A():349-58. PubMed ID: 6283813 [Abstract] [Full Text] [Related]
22. Participation of superoxide, hydrogen peroxide and hydroxyl radicals in NADPH-cytochrome P-450 reductase-catalyzed peroxidation of methyl linolenate. Kameda K, Ono T, Imai Y. Biochim Biophys Acta; 1979 Jan 29; 572(1):77-82. PubMed ID: 32915 [Abstract] [Full Text] [Related]
23. Relationship of the single-electron reduction potential of quinones to their reduction by flavoproteins. Powis G, Appel PL. Biochem Pharmacol; 1980 Oct 01; 29(19):2567-72. PubMed ID: 6775639 [No Abstract] [Full Text] [Related]
24. Superoxide anion involvement in NBT reduction catalyzed by NADPH-cytochrome P-450 reductase: a pitfall. Auclair C, Torres M, Hakim J. FEBS Lett; 1978 May 01; 89(1):26-8. PubMed ID: 207567 [No Abstract] [Full Text] [Related]
25. A possible mechanism of the generation of singlet molecular oxygen in nadph-dependent microsomal lipid peroxidation. Sugioka K, Nakano M. Biochim Biophys Acta; 1976 Feb 16; 423(2):203-16. PubMed ID: 2317 [Abstract] [Full Text] [Related]
26. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands. Davis CA, Dhawan IK, Johnson MK, Barber MJ. Arch Biochem Biophys; 2002 Apr 01; 400(1):63-75. PubMed ID: 11913972 [Abstract] [Full Text] [Related]
27. One- and two-electron reduction of menadione in guinea-pig and rat cardiac tissue. Floreani M, Carpenedo F. Gen Pharmacol; 1992 Jul 01; 23(4):757-62. PubMed ID: 1397983 [Abstract] [Full Text] [Related]
28. NADPH-dependen lipid peroxidation catalyzed by purified NADPH-cytochrome C reductase from rat liver microsomes. Pederson TC, Aust SD. Biochem Biophys Res Commun; 1972 Aug 21; 48(4):789-95. PubMed ID: 4404623 [No Abstract] [Full Text] [Related]
29. Reductive cleavage of anthracycline glycosides by microsomal NADPH-cytochrome C reductase. Oki T, Komiyama T, Tone H, Inui T, Takeuchi T, Umezawa H. J Antibiot (Tokyo); 1977 Jul 21; 30(7):613-5. PubMed ID: 408319 [No Abstract] [Full Text] [Related]
30. Generation of superoxide anion as a source of hydrogen peroxide in a reconstituted monooxygenase system. Kuthan H, Tsuji H, Graf H, Ullrich V. FEBS Lett; 1978 Jul 15; 91(2):343-5. PubMed ID: 210047 [No Abstract] [Full Text] [Related]
31. Purification and characterization of a membrane-bound NADPH-cytochrome c reductase capable of catalyzing menadione-dependent O2- formation in guinea pig polymorphonuclear leukocytes. Sakane F, Takahashi K, Koyama J. J Biochem; 1984 Sep 15; 96(3):671-8. PubMed ID: 6094521 [Abstract] [Full Text] [Related]
32. Lactoferrin-mediated formation of oxygen radicals by NADPH-cytochrome P-450 reductase system. Nakamura M. J Biochem; 1990 Mar 15; 107(3):395-9. PubMed ID: 1692825 [Abstract] [Full Text] [Related]
33. Evidence for superoxide generation by NADPH-cytochrome c reductase of rat liver microsomes. Aust SD, Roerig DL, Pederson TC. Biochem Biophys Res Commun; 1972 Jun 09; 47(5):1133-7. PubMed ID: 4402238 [No Abstract] [Full Text] [Related]
34. Stimulation of microsomal N-demethylation by solubilized NADPH-cytochrome c reductase. Miwa GT, Cho AK. Life Sci; 1976 May 01; 18(9):983-8. PubMed ID: 818455 [No Abstract] [Full Text] [Related]
35. Oxygen tolerance in neonatal rats: role of subcellular superoxide generation. Ischiropoulos H, Nadziejko CE, Kumae T, Kikkawa Y. Am J Physiol; 1989 Dec 01; 257(6 Pt 1):L411-20. PubMed ID: 2558583 [Abstract] [Full Text] [Related]
36. NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals. Bachur NR, Gordon SL, Gee MV, Kon H. Proc Natl Acad Sci U S A; 1979 Feb 01; 76(2):954-7. PubMed ID: 34156 [Abstract] [Full Text] [Related]
37. The catalysis of heme degradation by purified NADPH-cytochrome C reductase in the absence of other microsomal proteins. Masters BS, Schacter BA. Ann Clin Res; 1976 Feb 01; 8 Suppl 17():18-27. PubMed ID: 827231 [Abstract] [Full Text] [Related]
38. Effect of lipid depletion on the kinetics of microsomal NADH-cytochrome C reductase. Ishibashi T, Imai Y. Tohoku J Exp Med; 1976 Apr 01; 118(4):365-71. PubMed ID: 820017 [Abstract] [Full Text] [Related]
39. Redox activities of antitumor anthracyclines determined by microsomal oxygen consumption and assays for superoxide anion and hydroxyl radical generation. Peters JH, Gordon GR, Kashiwase D, Lown JW, Yen SF, Plambeck JA. Biochem Pharmacol; 1986 Apr 15; 35(8):1309-23. PubMed ID: 3008758 [Abstract] [Full Text] [Related]
40. Ca2+/calmodulin-dependent cytochrome c reductase activity of brain nitric oxide synthase. Klatt P, Heinzel B, John M, Kastner M, Böhme E, Mayer B. J Biol Chem; 1992 Jun 05; 267(16):11374-8. PubMed ID: 1375940 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]