These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 7240237

  • 41. NADH- and oxygen-dependent multiple turnovers of cytochrome P-450-CAM without putidaredoxin and putidaredoxin reductase.
    Eble KS, Dawson JH.
    Biochemistry; 1984 Apr 24; 23(9):2068-73. PubMed ID: 6722135
    [Abstract] [Full Text] [Related]

  • 42. High-pressure investigations of cytochrome P-450 spin and substrate binding equilibria.
    Fisher MT, Scarlata SF, Sligar SG.
    Arch Biochem Biophys; 1985 Jul 24; 240(1):456-63. PubMed ID: 2990349
    [Abstract] [Full Text] [Related]

  • 43. The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450.
    Poulos TL, Finzel BC, Gunsalus IC, Wagner GC, Kraut J.
    J Biol Chem; 1985 Dec 25; 260(30):16122-30. PubMed ID: 4066706
    [Abstract] [Full Text] [Related]

  • 44. Time-resolved Fourier-transform infrared studies of the cytochrome P-450cam carbonmonoxide complex bound with (1R)-camphor and (1S)-camphor substrate.
    Contzen J, Ristau O, Jung C.
    FEBS Lett; 1996 Mar 25; 383(1-2):13-7. PubMed ID: 8612780
    [Abstract] [Full Text] [Related]

  • 45. Mutations of glutamate-84 at the putative potassium-binding site affect camphor binding and oxidation by cytochrome p450cam.
    Westlake AC, Harford-Cross CF, Donovan J, Wong LL.
    Eur J Biochem; 1999 Nov 25; 265(3):929-35. PubMed ID: 10518786
    [Abstract] [Full Text] [Related]

  • 46. Electron paramagnetic resonance detectable states of cytochrome P-450cam.
    Lipscomb JD.
    Biochemistry; 1980 Jul 22; 19(15):3590-9. PubMed ID: 6250573
    [Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49. A cytochrome P450 class I electron transfer system from Novosphingobium aromaticivorans.
    Bell SG, Dale A, Rees NH, Wong LL.
    Appl Microbiol Biotechnol; 2010 Mar 22; 86(1):163-75. PubMed ID: 19779713
    [Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51. A Comparative Analysis of the Effector Role of Redox Partner Binding in Bacterial P450s.
    Batabyal D, Lewis-Ballester A, Yeh SR, Poulos TL.
    Biochemistry; 2016 Nov 29; 55(47):6517-6523. PubMed ID: 27808504
    [Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54. Substrate induced changes of the active site electronic states in reduced cytochrome P450cam and the photolysis product of its CO complex. Low-temperature magnetic circular dichroism data.
    Greschner S, Sharonov YuA, Jung C.
    FEBS Lett; 1993 Jan 04; 315(2):153-8. PubMed ID: 8417971
    [Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56. Substrate mobility in a deeply buried active site: analysis of norcamphor bound to cytochrome P-450cam as determined by a 201-psec molecular dynamics simulation.
    Bass MB, Paulsen MD, Ornstein RL.
    Proteins; 1992 May 04; 13(1):26-37. PubMed ID: 1594575
    [Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK, Lounnas V, Wade RC.
    J Mol Biol; 2000 Nov 10; 303(5):797-811. PubMed ID: 11061976
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.