These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


143 related items for PubMed ID: 7248469

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Red cell extensional recovery and the determination of membrane viscosity.
    Hochmuth RM, Worthy PR, Evans EA.
    Biophys J; 1979 Apr; 26(1):101-14. PubMed ID: 262407
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Lipid monolayer expansion by calcium-chlorotetracycline at the air/water interface and, as inferred from cell shape changes, in the human erythrocyte membrane.
    Riquelme G, Jaimovich E, Lingsch C, Behn C.
    Biochim Biophys Acta; 1982 Jul 28; 689(2):219-29. PubMed ID: 7115708
    [Abstract] [Full Text] [Related]

  • 10. Elastic energy of curvature-driven bump formation on red blood cell membrane.
    Waugh RE.
    Biophys J; 1996 Feb 28; 70(2):1027-35. PubMed ID: 8789121
    [Abstract] [Full Text] [Related]

  • 11. Transcellular cross bonding of the red blood cell membrane.
    Fischer TM.
    Biochim Biophys Acta; 1986 Oct 09; 861(2):277-86. PubMed ID: 3756160
    [Abstract] [Full Text] [Related]

  • 12. Affinity of red blood cell membrane for particle surfaces measured by the extent of particle encapsulation.
    Evans E, Buxbaum K.
    Biophys J; 1981 Apr 09; 34(1):1-12. PubMed ID: 7213927
    [Abstract] [Full Text] [Related]

  • 13. Microscopic photometric quantification of stiffness and relaxation time of red blood cells in a flow chamber.
    Artmann GM.
    Biorheology; 1995 Apr 09; 32(5):553-70. PubMed ID: 8541524
    [Abstract] [Full Text] [Related]

  • 14. Thermoelasticity of red blood cell membrane.
    Waugh R, Evans EA.
    Biophys J; 1979 Apr 09; 26(1):115-31. PubMed ID: 262408
    [Abstract] [Full Text] [Related]

  • 15. Bending undulations and elasticity of the erythrocyte membrane: effects of cell shape and membrane organization.
    Zeman K, Engelhard H, Sackmann E.
    Eur Biophys J; 1990 Apr 09; 18(4):203-19. PubMed ID: 2364914
    [Abstract] [Full Text] [Related]

  • 16. Mechanical properties of the human red blood cell membrane at -15 degrees C.
    Thom F.
    Cryobiology; 2009 Aug 09; 59(1):24-7. PubMed ID: 19362084
    [Abstract] [Full Text] [Related]

  • 17. Membrane skeletal protein structure and interactions in human erythrocytes after their treatment with diamide and calcium.
    Kumar J, Gupta CM.
    Indian J Biochem Biophys; 1992 Apr 09; 29(2):123-7. PubMed ID: 1398703
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Membrane skeletal dynamics: role in modulation of red cell deformability, mobility of transmembrane proteins, and shape.
    Sheetz MP.
    Semin Hematol; 1983 Jul 09; 20(3):175-88. PubMed ID: 6353589
    [Abstract] [Full Text] [Related]

  • 20. Amphiphile induced echinocyte-spheroechinocyte transformation of red blood cell shape.
    Iglic A, Kralj-Iglic V, Hägerstrand H.
    Eur Biophys J; 1998 Jul 09; 27(4):335-9. PubMed ID: 9691462
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.