These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


201 related items for PubMed ID: 7262078

  • 1. Interference of nucleoside diphosphates and inorganic phosphate with nucleoside-triphosphate-dependent calcium fluxes and calcium-dependent nucleoside-triphosphate hydrolysis in membranes of sarcoplasmic-reticulum vesicles.
    Waas W, Hasselbach W.
    Eur J Biochem; 1981 Jun 01; 116(3):601-8. PubMed ID: 7262078
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Nucleotide triphosphate utilization by cardiac and skeletal muscle sarcoplasmic reticulum. Evidence for a hydrolysis cycle not coupled to intermediate acyl phosphate formation and calcium translocation.
    Van Winkle WB, Tate CA, Bick RJ, Entman ML.
    J Biol Chem; 1981 Mar 10; 256(5):2268-74. PubMed ID: 6450765
    [No Abstract] [Full Text] [Related]

  • 6. Adenosine 5'-triphosphate dependent fluxes of manganese and and hydrogen ions in sarcoplasmic reticulum vesicles.
    Chiesi M, Inesi G.
    Biochemistry; 1980 Jun 24; 19(13):2912-8. PubMed ID: 7190437
    [No Abstract] [Full Text] [Related]

  • 7. [Ability of nucleoside triphosphates to provide for Ca 2+ transport by sarcoplasmic reticulum fragments].
    Lushchak VI.
    Ukr Biokhim Zh (1978); 1990 Jun 24; 62(2):64-9. PubMed ID: 2142350
    [Abstract] [Full Text] [Related]

  • 8. ADP-activated calcium ion exchange in sarcoplasmic reticulum vesicles.
    Beirăo PS, De Meis L.
    Biochim Biophys Acta; 1976 May 21; 433(3):520-30. PubMed ID: 819033
    [Abstract] [Full Text] [Related]

  • 9. Effect of ATP/ADP/phosphate potential on the maximal steady-state uptake of Ca2+ by skeletal sarcoplasmic reticulum.
    Dixon D, Corbett A, Haynes DH.
    J Bioenerg Biomembr; 1982 Apr 21; 14(2):87-96. PubMed ID: 6124541
    [No Abstract] [Full Text] [Related]

  • 10. Regulation of steady state level of phosphoenzyme and ATP synthesis in sarcoplasmic reticulum vesicles during reversal of the Ca2+ pump.
    de Meis L.
    J Biol Chem; 1976 Apr 10; 251(7):2055-62. PubMed ID: 5437
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Effect of acylphosphates on Ca2+ uptake by sarcoplasmic reticulum vesicles.
    Liguri G, Stefani M, Berti A, Nassi P, Ramponi G.
    Arch Biochem Biophys; 1980 Apr 01; 200(2):357-63. PubMed ID: 7436409
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Phosphate and thiophosphate group donating adenine and guanine nucleotides inhibit glibenclamide binding to membranes from pancreatic islets.
    Schwanstecher M, Löser S, Rietze I, Panten U.
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Jan 01; 343(1):83-9. PubMed ID: 1903188
    [Abstract] [Full Text] [Related]

  • 20. Phosphorylation of the sarcoplasmic reticulum membrane by orthophosphate. Inhibition by calcium ions.
    Masuda H, de Meis L.
    Biochemistry; 1973 Nov 06; 12(23):4581-5. PubMed ID: 4773845
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.